Workshop "Machine Learning for Chemistry and Chemical Engineering (ML4CCE)", September 9th, 2024

09:00	Opening Remarks		
09:15	Keynote Talk by Felix Strieth-Kalthoff: Machine Learning Hits the Lab: Experiment Planning with Bayesian (Co-)Pilots		
10:00	Johannes Zenn: Balancing Molecular Information and Empirical Data in the Prediction of Physico-Chemical Properties		
10:15	Nicolas Hayer : Embedding Machine Learning Methods in Physical Thermodynamic Models		
10:30	Mayank Nagda: PITs: Physics-Informed Transformers for Predicting Chemical Phenomena		
10:45	Stephen O. Obonyo : Decoding Molecular Language Model with Beam Search		
11:00	Coffee Break		
11:30	Keynote Talk by Dominik Grimm: Automated Flowsheet Synthesis with Deep Reinforcement Learning		
12:15	Poster Session I: all posters with odd numbers		
13:00	Lunch Break		
14:00	Keynote Talk by Venkat Venkatasubramanian: Do Large Language Models "Understand" Their Knowledge?		
14:45	Best Paper Talk by Gabriel Cathoud : Insights into Chemistry: Explainable AI with Group Contribution in Graph Neural Networks		
15:10	Poster Session II: all posters with even numbers		
16:00	Coffee Break		
16:30	Sagar Srinivas Sakhinana: Towards Human-Level Understanding of Complex Process Engineering Schematics: A Pedagogical Introspective Multi-Agent Framework for Open-Domain Question Answering		
16:45	Eduardo F. Montesuma: Benchmarking Domain Adaptation for Chemical Processes on the Tennessee Eastman Process		
17:00	Closing Remarks		

Workshop "Machine Learning for Chemistry and Chemical Engineering (ML4CCE)", September 9th, 2024

	Poster Session I 12:15-13:00		Poster Session II 15:10-16:00
1	Diogo R. Ferreira Machine Learning for Chemistry Reduction in N_2 -H ₂ Low-Temperature Plasmas	2	Ali Can Kara ChemGraph Explainer: A Graphical User Interface for Explaining Predictions of Graph Neural Networks in Chemistry
3	Marco Hoffmann Graph Neural Networks with Molecular Interaction Pooling for Pure-Component Vapor Pressure Prediction	4	Gabriel Cathoud Insight into Chemistry: Explainable AI with Group Contribution in Graph Neural Networks
5	Johannes Zenn Balancing Molecular Information and Empirical Data in the Prediction of Physico-Chemical Properties	6	Jan G. Rittig Structuring Latent Spaces of Variational Autoencoders for Molecular Design
7	Nicolas Hayer Embedding Machine Learning Methods in Physical Thermodynamic Models	8	Manuel Borja Modelling Tablet Quality Attributes Using Probabilistic, Knowledge-Guided Neural Network
9	Arjun John Kaithakkal Understanding CNN-Based Shape Optimization for Thermo-Hydraulic Efficiency Using Explainable Deep Learning	10	Zeno Romero Prediction of Diffusion Coefficients in Mixtures with Tensor Completion
11	Daniel Reinhardt cPAX: Comparative Visualization of Known and Novel Anomalies for Monitoring Chemical Plants	12	Viktor Martinek Shape Constraints in Symbolic Regression Using Penalized Least Squares
13	Jens Wagner Deep Set Models for Elucidating Unknown Mixtures with NMR Spectroscopy	14	Dean Brandner Optimizing Operation Recipes with Reinforcement Learning for Safe and Interpretable Control of Chemical Processes
15	Mayank Nagda PITs: Physics-Informed Transformers for Predicting Chemical Phenomena	16	Eduardo F. Montesuma Benchmarking Domain Adaptation for Chemical Processes on the Tennessee Eastman Process
17	Justus C. Will Enhancing Realism in Batch Distillation Simulations: Data-Efficient Time Series Style Transfer with Transformers	18	Justus Arweiler Anomaly Detection on Experimental Chemical Process Data
19	Marius J. Peter Anomaly Classification of Tennesee Eastman Process Data	20	Fabian Hartung Deep Anomaly Detection on Tennesse Eastman Process Data
21	Luisa Peterson Surrogate Modeling of Dynamical Systems: Deep Learning or Model-Order Reduction?	22	Simon Lutz A Benchmark Suite for Neural Network Verification
23	Sagar Srinivas Sakhinana Towards Human-Level Understanding of Complex Process Engineering Schematics: A Pedagogical, Introspective Multi-Agent Framework for Open- Domain Question Answering	24	Sagar Srinivas Sakhinana Retrieval-Augmented Instruction Tuning for Automated Process Engineering Calculations: A Tool-Chaining Problem-Solving Framework with Attributable Reflection