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1 Motivation

Dynamical systems are found in many areas of science and engineering, ranging
from climate systems to economic, chemical, and biomedical systems. The evo-
lution of the properties of such systems often occurs not only over time, but also
across spatial dimensions. As a result, dynamical systems are often abstracted
as a set of partial differential equations (PDEs). Due to the high nonlinearity
and coupled nature of chemical systems, the resulting PDEs often cannot be
solved analytically. Therefore, the use of numerical strategies that discretize the
system in space, such as finite difference or finite volume methods, is often the
solution of choice. However, numerical methods also encounter difficulties when
instabilities are present, or when the computational budget is limited for the
desired decision process that one envisions with the dynamic model.

Focusing on these two challenges, i.e., time efficiency and numerical stability,
several techniques have been proposed in the literature for modeling dynamic
systems in a data-driven manner. Two types of methods stand out: deep learning-
based and model-order reduction techniques. The use of these alternative mod-
eling paradigms to tackle the complexity of dynamical systems appears to be
promising in terms of time efficiency and numerical stability. Time-efficiency of
data-driven approaches tends to be higher than traditional approaches not only
in the phase of model development, but also in the phase of model use. And
depending on the specific data-driven method, numerical stability can even be
guaranteed.

In this work [4], we compare an example of each of these two methods: graph
neural networks (representing the deep learning paradigm) and operator infer-
ence (representing the model order reduction strategy). The case study presented
here consist in the dynamic simulation of a CO2 methanation reactor, which is
relevant in the context of renewable energy storage and power-to-x processes. We
first introduce the overall problem, then we briefly introduce the graph neural
network and operator inference approaches, and finally present the comparison
results and the conclusions.
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2 Case-study: CO2 methanation reactor

The CO2 methanation process converts carbon dioxide and hydrogen into methane
and water. The core of this process typically takes place in fixed-bed reactors,
whose operation must dynamically adapt to changing hydrogen loads resulting
from the dynamic profiles of renewable energy used in the upstream electrolysis
phase [1]. Since this reaction is highly exothermic, managing the heat profile of
the reactor is key to avoiding potential hotspots that could damage the expensive
catalyst inside and reduce the overall reactor efficiency.

In this work, we modeled the reactor behavior as one-dimensional and poly-
tropic, assuming that a single reaction is happening and that axial dispersion
effects can be neglected [7]. The resulting set of nonlinear and coupled PDEs
can be written as:
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where, X refers to the CO2 conversion and T refers to the temperature. Con-
stants εR, MCO2

, yCO2,in, uin, ρin, D and L define the specific settings of the
reactor. And the variables u, ρ, σeff, cp, Λax, U , Tcool and ∆HR are deter-
mined via algebraic expressions. Precise meaning of these constants is provided
in the Appendix. The model described by the equations 1 and 2 serves here as
a simulated black-box model from which the dynamic data are retrieved for the
posterior development of the data-driven models.

3 Graph neural networks

For the graph neural network approach, the dynamic problem is represented us-
ing two types of graphs. First, each time snapshot is represented as a chain-like
graph, where nodes represent the specific spatial point along the axial axis of
the reactor and (bidirected) edges represent the connection between contiguous
points in space within the reactor. The nodes are attributed with the corre-
sponding CO2 conversion and temperature values. This graph is here denoted
as the snapshot graph. Second, consecutive time snapshots are represented as a
matrix-like graph, where multiple snapshot graphs are connected using directed
edges connecting the same spatial point (node) from the past to the future. This
graph is denoted as the window graph.

The task of the graph neural network is to predict the snapshot graph of
the next time-step using the previous window graph. In this way, the prediction
of the dynamic system is carried out in a roll-out fashion updating the window
graph with the newly predicted snapshot graph while maintaining the same
window size (i.e., number of observed time-steps in the past to perform the
future prediction).
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4 Operator inference

Starting from matrix U ∈ Rn×(k+1) containing the dynamic evolution of a re-
actor state (i.e., CO2 conversion or temperature) across n spatial points and
(k + 1) time-steps, the operator inference approach [3] starts by constructing
a projection matrix V ∈ Rn×r. The projection matrix is obtained by selecting
the first dominant r basis vectors from a proper orthogonal decomposition. In
this way, the data is effectively reduced, and the following optimization problem,
which only involves an ordinary differential equation (ODE) system, is solved:

minÂ,Ĥ,B̂

∥∥∥ ˙̂U − ÂÛ − Ĥ
(
Û ⊗ Û − B̂

)∥∥∥+ αR(Â, Ĥ), (3)

where Â, Ĥ and B̂ are the operators to be inferred in the reduced space, and Û
refers to the compressed dynamic trajectory obtained from V⊤U. The symbol
⊗ stands for the Kronecker product and the upper symbol (·) refers to the time-
derivative. The R term refers to a regularization term to avoid ill-conditioning
[6]. The enforced parametrization on the linear and quadratic operators results
in guaranteed numerical stability according to [2].

Once the operators in the reduced-space are inferred, they can be used to
reconstruct an approximation of the original black-box dynamical system in the
original coordinate system via

˙̂u = Âû + Ĥ (û ⊗ û) + B̂ (4)

5 Results

For testing the performance of both methods, the following simulation was car-
ried out. The reactor model (i.e., equations 1 and 2) was solved considering a
time-span of 35 seconds using a discretization of 1750 steps both in the spatial
and the temporal dimensions. The simulated scenario consist in a load change
from a relatively high flow rate of hydrogen to half the original flow rate. The
first 20 seconds of the trajectory are used for model development, while the last
15 seconds are reserved for testing the approaches. This scenario helps on test-
ing how the different approaches can learn the future behavior of the dynamical
system from historical data, a situation often encountered in practice.

Table 1 shows a comparison of the predictive performance of both methods
according to the relative Frobenius norm of the error matrix obtained by each
of the methods. The graph neural network model achieves a higher error com-
pared to the order-reduction technique. This also comes along the fact that the
graph neural network model as a learned simulator of the dynamic process might
be difficult to interpret compared to the reduced dynamic system obtained by
operator inference.

The errors of the graph neural network tend to be more pronounced at points
where the gradients of the state trajectories are large. In this specific case, this
occurs close to the inlet of the reactor at the initial time-steps. This precise zone
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Table 1. Relative Frobenius norm for CO2 conversion X and temperature T , achieved
by the graph neural network (GNN) and the operator inference (OpInf) starategies.

Method Frobenius norm for X Frobenius norm for T

GNN (train) 5.34 % 16.97 %
OpInf (train) 0.052% 0.082%
GNN (test) 4.24 % 9.28 %
OpInf (test) 0.050% 0.58%

in the reactor corresponds to the area where the hotspot starts to appear. Since
the error occurs early on in the time dimension, the error is propagated in time
altering the relative accuracy of the predictions. This exemplifies the difficulty
of applying deep-learning methods to capture physical phenomena enclosed in
just a minor proportion of the data available. The inclusion of a physics-based
prior during training can also be envisioned here. The operation of the graph
neural network model could also be carried out in the reduced space obtained
by the operator inference method, which might improve the overall accuracy of
the graph neural network. Moreover, the evaluation time of the graph neural
network model is significantly smaller compared to the evaluation of the original
PDE system.

In comparison, operator inference achieves a significantly lower error on the
state trajectories prediction. The resulting set of ordinary-differential equations
is also comparatively cheaper to evaluate compared to the solution of the black-
box model. This attribute can be exploited not only in the context of data-
driven modeling, but also in the context of surrogate generation. An additional
advantage of the operator inference approach is the stability of the solutions that
can be guaranteed [2].

6 Conclusion

While deep-learning methods are powerful approaches to approximate dynami-
cal systems, they also come with certain limitations. Specially, in the context of
modeling chemical dynamic systems (where normal operation data abound com-
pared to out-of-normal operation data), deep-learning techniques should still be
improved to weight the amount of data with respect to the amount of information
that it provides. This is exactly an area where reduced-order techniques excel.
As exemplified by the presented CO2 reactor methanation problem, the issue
of information extraction is highly relevant to achieve accurate predictions that
could be potentially safely used in real-world scenarios. Despite this, in terms of
the improvement in computational time compared to solving the original system
of PDEs, both methods present a promising approach to tackle the modeling of
complex dynamical systems.
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7 Appendix

Equations 1 and 2 include the following constants: εR refers to the packed-bed
reactor void fraction, MCO2 to the molar mass of carbon dioxide, yCO2,in to the
inlet mass fraction of carbon dioxide, uin and ρin to the superficial gas velocity
and gas mixture density at the inlet, respectively. D refers to the tube diameter,
L to the reactor length, z to the axial and t to the time coordinate. In addition,
there are non-constant parameters that are described by algebraic equations.
These include the surperficial gas velocity u, the gas mixture density ρ, the
effective reaction rate σeff, the heat capacity cp, the axial heat conductivity Λax,
the heat transfer coefficient U , the cooling temperature Tcool and the enthalpy
of reaction ∆HR.

The specific GNN architecture used in this work corresponds to the GAT
model, which incorporates an attention mechanism into the traditional message-
passing scheme [5]. Thus, each GAT message-passing layer can be written as

h
(l+1)
i = σ

 ∑
j∈N (i)∪i

α
(l)
i,jθ

(l)h
(l)
j

 , (5)

where σ is a nonlinear function, θ(l) is a learnable matrix at layer l, and the
attention weight α

(l)
i,j measures the connection strength between the node i and

its neighbor j.
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