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Abstract. Computer-aided design of molecules using variational au-
toencoders (VAE) has shown great promise, but achieving interpretabil-
ity of the latent space remains a key challenge for guided generation
of molecules with desired properties. We adapted and evaluated vari-
ous disentanglement methods to chemically structure the latent space in
VAE-based molecule generation. Using conditional VAEs enables apply-
ing physicochemical property constraints on the latent space and is thus
promising for targeted molecular design.
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1 Introduction

Generative machine learning has opened up new possibilities for designing mol-
ecules with desired properties [1,3]. Variational autoencoders (VAEs) are a
prominent generative ML approach that learn a continuous representation of
the molecular space, referred to as molecular latent space. The molecular latent
space allows strategic sampling of molecules through continuous optimization
approaches, thereby facilitating the design of molecules with desired properties.
VAEs have, for example, shown promising results for drug 7] and fuel design [15].
However, VAE latent spaces typically constitute a high dimensionality, e.g., R?®
[10] and R [12], limiting chemical interpretability and optimization. There-
fore, we evaluate various techniques for structuring VAE latent spaces regarding
molecular properties.

2 Structuring variational autoencoders

To structure VAE latent spaces, unsupervised and supervised methods can be
employed, also referred to as disentanglement methods, cf. [6]. Unsupervised
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methods refine the VAE loss function to disentangle latent dimensions, i.e., de-
crease the shared information between multiple dimensions, without using prop-
erty information about the molecules. Supervised methods, in contrast, utilize
molecular information for structuring the VAE latent space during training.

We investigated both unsupervised, e.g., Kullback-Leibler (KL) loss adjust-
ments [5], and supervised methods, such as conditional VAEs (CVAEs), cf. [13,
14], and structured VAEs (SVAEs), cf. [7], for disentangling structural charac-
teristics and physicochemical properties of molecules in the latent space. Here,
we focus on the results of the supervised methods for encoding a molecular tar-
get property p into the latent space relevant for molecular design. We refer to
models as CVAEs when encoding property information in specific dimensions of
the latent space, e.g., by simultaneously training the VAE and a property predic-
tion MLP that considers only these dimensions as input. Thus, to achieve high
prediction accuracy, the CVAE encodes p-related information from the molecu-
lar structure into these specific dimensions. SVAEs encourage the whole latent
space to be informative about the property, e.g., by training an MLP for property
prediction on the whole latent space or applying deep metric learning (DML).
In both cases, an additional loss term accounting for the molecular property is
added to the VAE loss. Specifically, we consider the following methods:

— VAE: a default VAE using § to control the KL loss;

— CVAE: a CVAE using a multilayer perceptron (MLP) to embed p into single
latent space dimensions;

— CVAE(M): a CVAE using an MLP to embed molar mass M into single
latent space dimensions;

— SVAE: a SVAE using an MLP to embed p in the entire latent space;

— SVAE,e;: a SVAE using an MLP to embed p in the entire latent space,
regularized with group lasso loss to encourage feature selection;

— SVAEpum1: a SVAE using DML with triplet loss to embed p in the entire
latent space.

3 Case Study: Melting Point Encoding

As a case study, we aim to encode the melting point 7, into a molecular latent
space of a VAE because it provides information about the aggregate state of
a molecule that is critical for practical applications. We employ the Junction-
Tree VAE (JT-VAE) [10], which uses molecular representations in the form of
graphs and junction trees, i.e., graphs without loops, and allows molecular gen-
eration with chemical validity. We use the publicly available data set of melting
points for 34,000 molecules from [2] and extend it with molecules from the ZINC
database [9], which are composed of the same junction tree nodes as the initial
set, resulting in 66,000 molecules. The data set is split into a 98% training and
a 2% validation set by a stratified split based on the junction tree nodes and
melting points. We train all models with the hyperparameters provided by Jin
et al. [10]. We further use /3 annealing to ensure 90% reconstruction accuracy on
the validation set, so that the different VAEs are comparable and the evaluation
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of the property disentanglement focuses mostly on molecules that can be recon-
structed. Investigating the effects of disentanglement on the reconstruction of
molecules not included in training and validation would be interesting for future
work. We repeat all training runs three times and average the results.

Benchmarking supervised methods — Figure 1 shows the single dimension vari-
able prediction (SDVP) results of all supervised methods for the prediction of
the melting point T},,. The SDVP trains one MLP for each latent dimension to
predict T, thereby indicating whether the dimension is informative for the tar-
get property, cf. [4]. Compared to the baseline of 5-VAE, all supervised methods
embed T}, into the latent space to some extent. The CVAE achieves the highest
SDVP scores in the first two dimensions with average R? values of 0.56 and 0.34,
whereas the latent dimensions z; with ¢ > 6 exhibit lower SDVP scores than the
other methods. This indicates that the CVAE successfully disentangles the melt-
ing point information in the latent dimensions. The SVAEpy, implementation
based on deep metric learning demonstrated only a minor improvement over the
baseline. Conversely, the other SVAES, i.e., standard SVAE and SVAE,s, show
improved informativeness for the melting point in all latent dimensions, indi-
cating high entanglement of the entire latent space. Notably, the regularization
applied in the form of a group lasso loss did not improve over standard SVAEs.

Further, the CVAE(M) trained on the molar mass M is also informative in
regard to T),, see Figure 1. On the most informative dimensions, the CVAE(M)
exhibits similar SDVP values to the best SVAE trained on the melting point.
This raises a potential challenge when using a CVAE for molecule design with
multiple properties that relate to similar structural characteristics of a molecule
and are correlated. To avoid embedding redundant information into the latent
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Fig. 1. Comparison of supervised dis-
entanglement methods evaluated us-
ing single dimension variable prediction
with chemical properties.
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Fig. 2. Conditional VAE embedding of
the test set in conditional dimensions
of latent space. Histogram of distribu-
tions left and right. Optimal thresholds
as black lines.
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space, i.e., entanglement, CVAEs with multiple properties will have to share la-
tent dimensions and allocate separate dimensions for further, non-shared struc-
tural characteristics. This may become increasingly challenging as the number
of selected properties increases.

Constrained molecule generation — Furthermore, we test the best performing
method, the CVAE, for constrained molecular generation. That is, molecular
design often involves optimizing a certain property while applying constraints to
other properties. For example, in fuel design, a necessary constraint is to ensure
liquid aggregate state of a fuel component at ambient temperature, i.e., that the
melting point is below 253.15 K, see, e.g., [8]. We thus used the training set to
determine thresholds t1, t5 for the two most informative latent dimensions of the
CVAE to classify molecules with a melting point T},, below or above 253.15 K.
Figure 2 shows a scatter plot of the molecular embeddings of the validation
set in the two latent space dimensions. The embeddings are grouped by melting
points T, above (indicated in red) or below 253.15 K (indicated in blue) based on
the labeled data. Histograms on the top and right show the distributions of both
sets along each latent space dimension. The thresholds ¢; and ¢35, which split the
latent space dimensions z; and zs, are indicated as dashed lines, creating four
separate quadrants. Most molecules with T}, < 253.15 K are embedded in the
lower right quadrant (95.69 %), whereas most molecules with T;,, > 253.15 K are
in the upper left quadrant (95.42 %), indicating that the thresholds successfully
split the two classes. Furthermore, we observe that both latent dimensions are
entangled, with a Pearson correlation coefficient of -0.84, which is a result of the
JT-VAE architecture with the junction tree and molecular feature latent space,
cf. [11]. Overall, the CVAE enables considering melting point constraints in the
generation of molecules, thereby facilitating targeted molecular design.

4 Conclusion and Outlook

We utilize several methods to structure molecular latent spaces of VAEs with re-
spect to molecular properties. We find that conditional VAEs can encode molec-
ular properties into single latent dimensions, enabling consideration of property
constraints in molecular generation with VAEs. Future work could target the en-
coding of properties into latent spaces of other generative ML approaches such as
diffusion- and flow-based models [1]. Further, encoding multiple physicochemical
properties into generative ML-based latent spaces similar to [13] will be highly
relevant for molecular design which typically involves a multitude of property
constraints and objectives.
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