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Abstract. Since Graph Neural Networks (GNNs) made a big impact
on graph structured datasets, they are widely utilized in the field of
chemistry. However, the reasons behind the prediction of GNNs are not
always obvious, so they are considered as black-box models. In this pa-
per, we introduce a graphical user interface (GUI) which can be used
for explaining the predictions of GNNs. We aim to integrate our GUI
into the user’s research directly to make the predictions of GNNs more
understandable in both classification and regression tasks. Furthermore,
we offer the option to use the built-in GNN models to train custom
datasets directly. Additionally, the system incorporates several explain-
able artificial intelligence (XAI) techniques, and also allows users to as-
sess the accuracy of explanation findings using various assessment met-
rics and thus to compare the explanation outcomes. Using the well-
known datasets in the field, this tool can also be used for education
purposes. The interface provides a comprehensive platform for examin-
ing and interpreting the predictions provided by the GNNs and merging
several GNN models with XAI approaches. This will facilitate a deeper
understanding and possibly lead to new discoveries in researchers’ re-
spective domains in understanding the underlying elements that influ-
ence the model’s explainability. The code is made publicly available at
https://github.com/ChemGraphExplainer/ChemGraphExplainer.

Keywords: Artificial Intelligence · Graph Neural Networks · Explain-
able Artificial Intelligence · Chemistry · Graphical User Interface

1 Introduction

Graph Neural Networks (GNNs) have seen a sharp rise in usage in the last several
years for practical uses, including fraud detection [13], drug design [16, 24, 27,
1, 29], healthcare [40, 41], and recommender systems [9]. Several graph-related
tasks, such as node [10, 14], link [5, 36], and graph classifications [37], have been
thoroughly studied. As GNNs become more and more common, more attention is
being given to their explanation. Due to the wide use of GNNs in different fields
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Explainable Artificial Intelligence (XAI) has become increasingly important in
the context of GNNs as its applications in delicate and important fields increase.
XAI is a research area in which methods are developed that enable human users
to understand and trust the results and outputs generated by machine learning
algorithms. This explanation is not directly achievable in traditional AI methods
[2, 8, 20]. The goal of XAI for GNNs is to increase network transparency so that
users can comprehend the reasoning behind a given prediction.

While the majority of XAI researches has been investigated for classification
problems [3, 19], regression problems have received little attention despite having
a very important place in machine learning [12]. Generally, the XAI methods
developed for classification problems are not appropriate to apply in studies on
regression problems. Only recently, such methods have been adapted to deal
with regression problems [12].

There are some libraries that enable the use of GNN models and the eval-
uation of predictions made with XAI methods. Libraries frequently used in the
field of chemistry include DIG [15], DeepChem [18], and PyTorch Geometric [7].
However, these libraries do not provide a user interface and do not offer op-
tions suitable for using explanation methods for regression problems. We aim to
develop a user-friendly library with the user interface by using and developing
the DIG library. The reason we use the DIG library is that it comes ready to
integrate some XAI methods directly into GNN models. In addition, our user
interface, named ChemGraph Explainer, offers the opportunity to easily eval-
uate and compare the decisions made by the GNN model with different XAI
methods.

The remainder of the paper is structured as follows. In Section 2 general
information about GNNs will be given and the GNN models included in Chem-
Graph Explainer will be explained. Additionally, we also present information
about the categorization of XAI methods, the methods included in the user in-
terface, and the evaluation metrics used to evaluate XAI methods. In Section 3,
detailed information will be given about ChemGraph Explainer and its use, and
also our contribution will be mentioned. In Section 4 we show three case studies
using ChemGraph Explainer. Finally, Section 5 concludes the paper with some
discussion.

2 Methods

In this section, we will give technical information about some GNN models and
also explanation methods included in the user interface. The GNNs and expla-
nation methods we will talk about in this section are the models and methods
that are available in the DIG library or that we are adding to the DIG library.

2.1 Graph Neural Networks Models

There are many studies carried out with deep learning methods in Euclidean
space such as natural language processing, image recognition or video processing.
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In addition, recently there has been an increasing interest in examining graph
data with deep learning approaches. However, significant difficulties have arisen
due to the complexity of graph-structured data. For example, graph data has a
complex structure, causing difficulties in machine learning algorithms [30].

Graph Convolutional Networks (GCNs) [38] are algorithms that work with
graph structures to simulate the relationships between edges, nodes, or graphs.
GCNs compile data from a node’s neighbors to update its representation. This
procedure transforms and gathers characteristics from a node’s local neighbor-
hood in an attempt to capture the graph structure. Using graph signal processing
techniques and transformations over the graph Laplacian, spectral approaches
carry out convolution operations in the spectrum domain. In contrast, spatial
techniques use the structure of the graph to directly aggregate characteristics
from nearby nodes.

Graph Isomorphism Networks (GIN) [31] are developed to improve the
representation capacity of graph topology. By simulating the strength of the
Weisfeiler-Lehman (WL) graph isomorphism test, GIN seeks to optimize the dis-
criminative power of graph architectures. As a result of this aggregation process,
GIN changes the representation vector of the node by combining the features of
its neighbors. This process is comparable to the WL test’s labeling and summa-
rizing steps. In order to make sure that various node neighbors are transferred
to diverse representations, GIN uses injective functions to aggregate neighbor
features. In addition, GIN aggregates neighbor features using multi-layer per-
ceptrons.

Graph Attention Network (GAT) [25] is a neural network design that uses
masked self-attention layers to overcome the drawbacks of existing graph convo-
lution models. GATs are able to pay attention to the properties of these nodes
and provide varying weights to different nodes within their neighborhoods.

2.2 XAI Methods

Explanation techniques can be grouped in two different ways. The first of these
is based on the application period of the explanation method and the type of AI
model to which it can be applied, see Figure 1. According to their explanation
periods, they are classified into: transparent and post-hoc. Transparent methods
are methods, in which the internal structure of the model and the decision-
making process can be directly understood. K-nearest Neighbor, Linear-logistic
regression, and decision Trees are examples of transparent methods [8]. Post-hoc
methods are explanation methods applied to complex models that can be applied
after the training of the AI model is completed. Post-hoc methods are further
categorized into two as model-agnostic and model-specific, depending on whether
they can be applied to any AI model. Model-agnostic methods are explanation
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Fig. 1. Categorization of XAI techniques according to their application stages (during
training or after training) and their applicability to models [8].

Fig. 2. Categorization of XAI techniques according to their application methods [15].
´

methods that can be applied to any machine learning method without being
specific to a particular model. Model-specific methods are methods that can be
used on certain model types only.

Alternatively, the categorization can also be made according to the applica-
tion methods of explanation methods, see Figure 2. Explanation techniques are
categorized into two main ways to evaluate the model. Model-level explanation
methods aim to explain the model in general, independent of a specific input
[35]. Since model-level explanation methods are very unexplored methods, only
instance-level explanation methods have been added to ChemGraph Explainer
so far, therefore only instance-level explanation methods are discussed in the
following part.

Gradients-Based Methods [15] are employed for deep learning models op-
erating on graph data to improve the explainability of these models. The base
of these techniques is the computation of gradients by back propagation, which
establishes the significance of input information about the target prediction.
Here, the main idea is to use gradients or hidden feature maps to quantify the
sensitivity between the target prediction and the input characteristics.
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Gradient-weighted Class Activation Mapping (Grad-CAM) [22] is a method
that calculates the prediction gradients related to the node embeddings in the
final layer of the model. These gradients are averaged to obtain a weight for
each feature map, and these weights are used to highlight important nodes in
the feature maps. Thus, a heatmap is created that shows the nodes with the
most influence on the prediction.

Perturbation-Based Methods [15] examine how the output predictions alter
in response to various input perturbations. The main notion of perturbation-
based approaches is to assess how the model’s predictions are affected by keeping
or changing specific input properties. If an important part of the input for the
prediction is changed, a dramatic change in the prediction is observed. In order
to explain deep neural networks the perturbation-based methods are generally
used [6, 34].

GNNExplainer [32] is a model-agnostic method that aims to generate under-
standable explanations for predictions. It finds important node properties and
subgraph structures that have a big impact on the predictions. GNNExplainer
maximizes the mutual information between the distribution of possible subgraph
structures and the GNN’s predictions by rephrasing the explanation generation
as an optimization task. This approach is extremely flexible and may be used for
any GNN model as well as any graph-based task, including graph classification,
link prediction, and node classification. GNNExplainer considerably surpasses
baseline techniques in producing succinct and consistent explanations, improv-
ing model transparency, interpretability, and confidence by displaying pertinent
graph structures and offering insights into model flaws.

Decomposition Methods [15] divide the initial prediction scores into many
components, which are subsequently interpreted as the importance scores of
matching input features, in an attempt to explain the predictions of deep graph
models. By examining model parameters, this technique reveals the connections
between input space features and output predictions.

Graph Neural Network Layer-wise Relevance Propagation (GNN-LRP) [21]
is a method that offers higher-order explanations for the predictions made by
GNNs. Using a hierarchical attribution approach, it breaks down the prediction
into relevance scores for various network walks at each stage by applying proven
technique named Layer-wise Relevance Propagation (LRP) [4]. This method
finds sets of edges that together contribute to the prediction, capturing the
intricate relationships between the network’s layers. Graph Neural Network -
Gradient Integration (GNN-GI) [21] uses the same working logic as the GNN-
LRP method, but is a simplified version of it.

Deep Learning Important FeaTures (DeepLift) [23] sets a reference value and
this reference value is used to compare with the normal operation of the machine
learning model. The input value is compared with the reference value and the
working logic of the model is tried to be calculated.
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Surrogate Methods [15] are described as using a simple surrogate model to
approximate the AI model’s predictions for neighboring regions of the input. The
results obtained from the interpretable surrogate model are applied to explain
the original prediction. Some methods such as GraphLime [11], PGM-Explainer
[26], RelEx [39] have been proposed to explain deep graph models.

2.3 Evaluation Metrics

In this section, some information will be given about evaluation metrics to eval-
uate explanation methods. When the predictions made by AI models are ex-
plained, it is necessary to evaluate whether the explanation made is logical or
not. However, there may be cases where researchers cannot visually detect how
meaningful explanation methods are or how accurate results XAI methods show.
For this reason, some evaluation criteria are needed in XAI methods. In this sec-
tion, the metrics used to evaluate XAI methods will be discussed.

Fidelity+ [17] assesses how well a model can recognize important features. The
basic idea is that the model’s predictions need to drastically drop if the elements
the model deems critical are eliminated. Stated differently, a model has correctly
identified the crucial features if it recognizes some nodes or edges as significant
and removing these features results in a lower prediction accuracy.

Fidelity+acc =
1

N

N∑
i=1

(1(ŷi = yi)− 1(ŷ1−mi = yi)) (1)

In Equation (1), N is the total number of samples evaluated, ŷi is the GNN’s
prediction for the ith graph, yi is the true label of the molecule, ŷ1−mi is the
prediction made by the GNN model after removing important features, and the
indicator function 1 returns 1 if the condition is true and 0 otherwise.

Fidelity- [33] assesses how important feature preservation affects model predic-
tions. It gauges the degree to which the model’s predictions hold up when the
important features are kept and the rest are eliminated. The truly significant
information has been accurately captured by the model if its predictions remain
mostly unchanged while the features that it considers vital are kept.

Fidelity-acc =
1

N

N∑
i=1

(1(ŷi = yi)− 1(ŷmi
= yi)) (2)

In Equation (2), ŷmi
is the prediction made by the GNN model when keeping

important features only.
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Sparsity [17] assesses the degree of sparsity in the explanation findings. Effec-
tive explanations should focus on the most significant details while ignoring the
less significant ones. This measure evaluates the importance of the features that
the explanation method chooses and establishes how few features it chooses.

Sparsity =
1

N

N∑
i=1

(
1− |mi|

|Mi|

)
(3)

In Equation (3), mi indicates the number of important features in the ith sam-
ple and Mi represents the total number of features in the specific sample. In
ChemGraph Explainer, we determine the sparsity value as an external input.
In this way, the user will be able to calculate fidelity+ and fidelity- values by
determining how many features are important in the input.

3 Graphical User Interface ChemGraph Explainer

In this section, some information will be given about the user interface we are
developing. ChemGraph Explainer is a user interface developed based on the
DIG library. Our main motivation is to develop a user-friendly user interface for
users working with GNN models in the field of chemistry to evaluate the results
obtained by GNN models and to enable them to see the reasons for the predic-
tions of these models. There are different libraries that can be used in this field.
Our current implementation is based on DIG [17]. This library distinguishes from
others in that different XAI methods useful for GNN models are available in the
library. Additionally, the DIG library is ready to use with 2 GCN models (with
2-layers and 3-layers, respectively) and GIN. We are currently using DIG library
methods for explanations, but we also want to integrate causality methods into
the system. We have designed the user interface as well as the visualization of
the results. We are also continuously adding various GNNs such as GAT to the
system.

The appearance of ChemGraph Explainer can be seen in Figure 3. It has
three main building elements: datasets, GNN models, and explanation methods.
A number of pre-specified datasets are available to be selected for use and some
GNN models and explanation methods are made available or are still being
worked on. Given these building elements, ChemGraph Explainer is beneficial
in different application scenarios. Some examples are:

– Use of a pre-specified dataset and a given GNN model. This simple use case
enables researchers to get familiar with the tool before working on their
own datasets. In addition, it can also serve as a means of education to train
students for GNN-based applications in chemistry.

– Use of a user’s dataset with a given GNN model. This allows researchers and
students to explore their own data.

– Integration of new GNN models. Machine learning researchers can use this
option to test their new GNN models for chemical applications.
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Fig. 3. ChemGraph Explainer Graphical User Interface.

– Integration of new explanation methods. Machine learning researchers can
use this option to test their new explanation methods for chemical applica-
tions.

In addition, ChemGraph Explainer provides visualization functionality to make
the explanation results visible.

The current implementation is restricted to pre-specified datasets and given
GNN models and explanation methods. Working with ChemGraph Explainer
thus has the following typical workflow. When the program is run, the user
should select a dataset, a GNN model, and an explanation method. Afterwards,
the user can select a particular molecule to explore it’s classification and the
related explanation. This can either be done by manually entering a SMILES
text or by selecting a molecule from the panel. In addition, in order to calculate
Fidelity+ and Fidelity- metrics, sparsity value (between 0-1) must be specified.
The explanation can then be visualized by clicking the result button.

4 Case Studies

In this section, the explanation results we obtained with different datasets will
be shown and evaluated. Particularly, using ChemGraph Explainer, we illustrate
the reasons for the predictions for a molecule with different explanation methods
of a molecule. Also, the obtained fidelity evaluation metrics will be evaluated.
The datasets used in this study are BACE [28], BBBP [28], and MUTAG [28].
The BBBP dataset contains information about the ability of molecules to cross
the blood-brain barrier (BBB). The BACE dataset is a dataset describing the
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activity of BACE1 inhibitors. MUTAG is a dataset containing the activities of
chemical compounds that cause mutation. All of these datasets are instances of
binary classification problems.

We use a GCN model of 3 layers, each layer with 128-dimensional node
features. The ReLU activation function is used between these layers. The dropout
rate of the model was determined as 0.0. The learning rate was set to 0.001, the
weight decay was set to 5e-4, and the batch size in each training epoch was set
to 32. The output layer of the model is summarized by the maximum readout
function.

To train the models, we divided all the datasets into 80% train, 10% eval-
uation, and 10% test dataset. Then, we trained GCN models for the different
datasets. After the training phase, the average Fidelity+ and Fidelity- values
of the test datasets were calculated at different sparsity values with five differ-
ent explanation methods. When evaluating the fidelity metrics, an important
criterion is that the Fidelity+ metric is expected to be as close to 1 while the
Fidelity- metric as close to 0 as possible. When calculating the Fidelity+ value,
the situation in which the most important features are removed from the input
data is calculated, that is, when they are removed, it is expected to see a change
in the result. On the other hand, when calculating the Fidelity- value, the least
important features are removed and the prediction should not be affected by this
change, that is, the Fidelity- value is expected to be close to 0. As can be seen
in Figure 4, while the DeepLift and GNN-GI method produced successful expla-
nation results in all three datasets, the GNN-LRP method could not approach
the expected scores for the fidelity metrics for all three datasets. In addition,
while the GradCam method produced successful fidelity metrics in the MUTAG
dataset, it was one of the top three most successful methods for the Fidelity+
metric for the BACE dataset and was one of the top three methods for the
Fidelity- metric in the BBBP dataset. As can be observed in all three dataset
tests, as the sparsity value increases, the explanation methods move away from
the targeted success metric values.

When values close to 0 are chosen for sparsity, such as 0.2, it means that 80%
of the nodes within the selected molecule are important. In this case, it is more
possible to produce successful fidelity metrics than low sparsity values. On the
other hand, at high sparsity values, many nodes are marked as less important
and therefore the expected success metric values are gradually moved away. By
selecting the sparsity value to 0.5 with ChemGraph Explainer, Figure 5, 6, and
7 show the explanation results and visualization of a molecule selected from
the BACE, BBBP, and HIV dataset, respectively, according to five different
explanation methods. The red circles in the images of GradCam, DeepLift, and
GNNExplainer show the parts that have a positive impact on the decision when
the GCN model makes predictions. In GNN-LRP and GNN-GI images, red circles
show the parts that have a positive impact on the decision when the GCN model
makes predictions, while blue circles show the parts that have a negative impact.
In addition, the upper left part of the visual output produced by ChemGraph
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(a)

(b)

(c)

Fig. 4. Average of Fidelity+ (Left) and Fidelity- (Right) scores of the explanation
results produced for the test dataset after training: (a) BACE, (b) BBBP, (c) MUTAG.

Explainer also shows the classification prediction made by the GNN model, the
fidelity metrics, and the explanation method used for the evaluation.



ChemGraph Explainer 11

(a)

(b) (c)

(d) (e)

Fig. 5. Explanations of the prediction of a GCN model trained on the BACE dataset
for a molecule selected from the BACE dataset using different XAI methods. (a) Grad-
CAM, (b) GNN-LRP, (c) GNN-GI, (d) GNNExplainer, (e) DeepLift. Note that “Fi-
delity” and “Fidelityinv” correspond to the Fidelity+ and Fidelity- metrics, respectively.
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(a)

(b) (c)

(d) (e)

Fig. 6. Explanations of the prediction of a GCN model trained on the BBBP dataset
for a molecule selected from the BBBP dataset using different XAI methods. (a) Grad-
CAM, (b) GNN-LRP, (c) GNN-GI, (d) GNNExplainer, (e) DeepLift. Note that “Fi-
delity” and “Fidelityinv” correspond to the Fidelity+ and Fidelity- metrics, respectively.
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(a)

(b) (c)

(d) (e)

Fig. 7. Explanations of the prediction of a GCN model trained on the HIV dataset for
a molecule selected from the HIV dataset using different XAI methods. (a) GradCAM,
(b) GNN-LRP, (c) GNN-GI, (d) GNNExplainer, (e) DeepLift. Note that “Fidelity” and
“Fidelityinv” correspond to the Fidelity+ and Fidelity- metrics, respectively.
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5 Conclusion

With the ChemGraph Explainer, we offer researchers who conduct research us-
ing GNNs in the field of Chemistry the opportunity to evaluate the decisions
made by the models they have developed and to see the reasons for the deci-
sions taken. In addition to research, this tool can also be used for education
purposes to support teaching about GNNs and their applications in the field of
chemistry. The development of this user interface is in progress and the current
implementation is restricted to pre-specified datasets and given GNN models
and explanation methods. Additional functionalities will be integrated in future.
our contributionsfuture goal is for users to upload custom GNN models and cus-
tom datasets to ChemGraph Explainer to receive the explanation results. This
continued development includes, among others, further GNN models and XAI
techniques such as causality-based methods, and handling of regression tasks.
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