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Abstract. Predicting the thermophysical properties is crucial in chemi-
cal engineering. Physical group-contribution methods (GCM) are widely
used for this purpose but suffer from incomplete and inconsistent param-
eterizations, severely limiting their applicability and accuracy. In this
work, we solve both issues by combining the most successful GCM, UNI-
FAC, with matrix completion methods (MCM) from machine learning,
whereby the MCM is used to predict the pair-interaction parameters for
the GCM. The resulting hybrid model, UNIFAC 2.0, has significantly
higher prediction accuracy and scope than the original model.

1 Introduction

Knowledge of the thermodynamic properties of mixtures is crucial for chemi-
cal engineering. However, the sheer combinatorial diversity of mixtures makes it
impossible to study each relevant mixture experimentally, making reliable pre-
diction methods indispensable. Group-contribution methods (GCM) are widely
used for this purpose. The best-established GCM is UNIFAC for predicting ac-
tivity coefficients in liquid mixtures. Since its introduction in 1975 [3] it has
been constantly revised and improved [15, 4, 12, 16, 5, 17] and is implemented in
basically all process simulators, underlining its enduring relevance and success.

We use the latest published version of UNIFAC [17], labeled as UNIFAC
1.0 here, as a reference. UNIFAC 1.0 decomposes components into structural
groups, and applying it to a given mixture requires pair-interaction parameters
(amn) for each binary combination of the occurring main groups m and n. How-
ever, interaction parameters are missing for 56% of all pairs of groups, in some
cases due to the challenging fitting process and in other cases due to the lack of
experimental data for direct fitting, which severely hampers the applicability of
UNIFAC 1.0 (a single missing relevant parameter prevents using the model). Un-
known amn can be estimated using artificial training data from COSMO-based
prediction methods or atomic interaction parameters. However, both approaches
yield unreliable results and cannot match the accuracy of fitting to experimental
vapor-liquid equilibrium (VLE) data [13].

In this work, we introduce a new way of predicting the interaction parameters
of GCM based on machine learning. The approach is based on the idea that the
pair-interaction parameters can be treated as elements of a square matrix and



a matrix completion method (MCM) [14, 9, 7, 6, 8, 10] is used to calculate the
entries. Thereby, numbers for all entries are found, and the problem of missing
parameters is solved. The proposed MCM, UNIFAC 2.0, enhances our previous
work [10] by incorporating end-to-end training on extensive experimental data.
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Fig. 1. Comparison of UNIFAC 1.0 and UNIFAC 2.0. UNIFAC 1.0 relies on sequen-
tial parameter fitting, whereas UNIFAC 2.0 integrates an MCM for predicting pair-
interaction parameters and is trained end-to-end on experimental logarithmic activity
coefficients (ln γi) derived from VLE data.

2 Method: UNIFAC 2.0

Fig. 1 compares the original UNIFAC 1.0, based on sequential and sometimes
inconsistent individual parameter fitting, with the proposed UNIFAC 2.0, based
on end-to-end training of MCM features on 224,562 experimental data points,
giving a consistent, complete parameterization; both UNIFAC variants rely on
the same structural groups and physical model equations.

The MCM is based on decomposing the matrix of the pair-interaction pa-
rameters amn into the product of two feature matrices, thereby enabling the
prediction of missing matrix entries through learned interactions. Each amn is
thereby modeled as follows:

amn = θT
n · βm. (1)

Here, θn and βm are column vectors of length K, with K representing the latent
dimension, a hyperparameter that was determined to be K = 8 in preliminary
studies.

Our proposed probabilistic model integrates observations (ln γi) and the la-
tent variables (LVs) that characterize UNIFAC main groups (θn, βm) within
a Bayesian framework. Specifically, all ln γi and LVs are modeled as indepen-
dent random variables. A standard normal distribution is used as prior for each



LV. The likelihood of observing ln γi, given the LVs, follows a Cauchy distribu-
tion centered around the predicted activity coefficients ln γUNIFAC 2.0

i with scale
parameter λ = 0.4:

p(ln γi |θn,βm) = Cauchy(ln γUNIFAC 2.0
i , λ), (2)

where ln γUNIFAC 2.0
i is determined via the standard UNIFAC equations [17] using

the predicted interaction parameters amn.
Written in Pyro [1], our probabilistic model adopts stochastic variational

inference (VI) [2] for posterior approximation. This approach leverages the Adam
optimizer [11], with a learning rate of 0.15. A normal distribution is employed
as the variational distribution, with all LVs being treated independently.

3 Results and Discussion

Fig. 2 compares the performance of UNIFAC 2.0 to that of the original UNIFAC
1.0 in terms of mean absolute error (MAE) and the mean squared error (MSE)
for a test set containing 27,287 data points and covering 2,603 different binary
mixtures, cf. Fig. 2. Since UNIFAC 2.0 has a larger scope than UNIFAC 1.0,
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Fig. 2. MAE and MSE of the predicted ln γi of the test set (pred). For comparison,
the results of UNIFAC 2.0 trained on all experimental data and UNIFAC 1.0 are
also shown (fit). UNIFAC 1.0 can only predict 25,998 data points for 2,202 binary
mixtures (UNIFAC 1.0 horizon), while an additional 1,289 test data points for 401
binary mixtures can only be predicted by UNIFAC 2.0 (UNIFAC 2.0 only). Error bars
denote standard errors of the means.

a distinction is made: all data points that both methods can predict are sum-
marized in the UNIFAC 1.0 horizon, all data points where only UNIFAC 2.0 is
applicable are summarized as UNIFAC 2.0 only. Fig. 2 clearly shows the superior
predictive accuracy of UNIFAC 2.0 over UNIFAC 1.0 in both error scores. Even
more importantly, the new method not only improves accuracy for data points



within the predictive range of UNIFAC 1.0, but it also maintains this accuracy
for data points beyond the scope of UNIFAC 1.0. Additionally, Fig. 2 shows
that the accuracy of the true predictions with UNIFAC 2.0 obtained by strictly
withholding the test data during the training (open symbols) is only marginally
smaller than that of the UNIFAC 2.0 version that has been trained on all data
points (closed symbols); this holds for both the "UNIFAC 1.0 horizon" and the
"UNIFAC 2.0 only" subset.

The activity coefficients obtained by UNIFAC 2.0 can be used directly to
predict phase equilibria of mixtures, which are at the core of the design and op-
timization of thermal separation processes in chemical engineering. In Fig. 3, we
show isothermal vapor-liquid phase diagrams for two ternary mixtures predicted
by UNIFAC 2.0 as examples. Although no data on multi-component mixtures
were used for training UNIFAC 2.0, the underlying physical framework of UNI-
FAC also enables predictions for such mixtures. Excellent accuracy is found.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

2-Propanol (1)
Diisopropyl ether (2)

1-Methoxy-2-propanol (3)

340 K

(a)

x1, y1 / mol mol−1

x
2 , y

2 / m
ol m

ol −
1x 3

, y
3

/ m
ol

m
ol
−1

Liquid
Vapor (exp)
Vapor (pred)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1,1,1-Trichloroethane (1)
1-Chloro-1,1-difluoroethane (2)
1,1-Dichloro-1-fluoroethane (3)

323.25 K

(b)

x1, y1 / mol mol−1

x
2 , y

2 / m
ol m

ol −
1x 3

, y
3

/ m
ol

m
ol
−1

Fig. 3. Prediction of isothermal vapor-liquid phase diagrams for ternary mixtures with
UNIFAC 2.0 (pred) and comparison to experimental data (exp) from the DDB. The
temperature and the composition of the liquid phase were specified, and the composi-
tion of the corresponding vapor phase in equilibrium was predicted.

4 Conclusions

We introduce UNIFAC 2.0, a hybrid model based on a MCM embedded into
the UNIFAC framework, thereby combining machine learning with established
physical models and addressing their limitations. UNIFAC 2.0 shows significantly
superior performance than the original model and even maintains high predic-
tive accuracy in cases where UNIFAC 1.0 is not applicable. The hybridization
approach can easily be extended to other physical thermodynamic models.
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