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Abstract. The elucidation of unknown mixtures is a significant chal-
lenge in chemistry and chemical engineering, where accurate specifica-
tions are essential for efficient process design and operation. We propose
an ’NMR fingerprinting’ method to automate the classification of struc-
tural groups in mixtures based on standard nuclear magnetic resonance
(NMR) experiments and a deep set model (DSM). The DSM is trained
on experimental NMR spectra of pure components, augmented with syn-
thetic spectral data, and comprises invariant and equivariant network
structures to ensure predictions independent of input size and permuta-
tions. When applied to test mixtures, the predictions by NMR finger-
printing agree well with the true mixture compositions.

1 Introduction

Complex mixtures of unknown compositions are ubiquitous in chemistry and
chemical engineering and constitute a stiff challenge for designing and optimiz-
ing efficient processes. Nuclear magnetic resonance (NMR) spectroscopy is a
powerful analytical technique generally suited for this purpose, but for complex
mixtures, elucidation is expensive, requires expert knowledge, and often results
in ambiguity. Hence, reliable automated methods for elucidating unknown mix-
tures are precious.

In prior work, we proposed ’NMR fingerprinting’ for automatically identi-
fying the structural groups, the building blocks of components, in an unknown
mixture based on standard NMR spectra, which is much simpler than obtaining
the respective information on the components. From a machine learning (ML)
perspective, this is a classification problem, i.e., assigning the correct groups to
the signals in the NMR spectra, so a support vector classification (SVC) was
developed and trained [1, 2]. Based on the obtained group-specific fingerprints,
pseudo-components can be defined [3], which can subsequently be used for ther-
modynamic modeling of unknown mixtures [4].

However, the SVC-based NMR fingerprinting has significant limitations in its
application, mainly due to varying input sizes (number of signals in the NMR
spectra) in this application. This work overcomes this limitation by developing
a classification model based on a deep-set architecture [5]. Furthermore, the
approach is extended by incorporating information from 2D NMR experiments
and using data augmentation during training.



2 Methodology

Figure 1 shows an overview of the proposed model architecture. The training

Fig. 1. Overview of the NMR fingerprinting method developed in this work to clas-
sify 13 structural groups in NMR spectra of mixtures using a deep set model (DSM)
trained on experimental pure-component NMR spectra from the open-source databases
BMRB [6] and NMRShiftDB [7].

data for the deep set model DSM was derived from the open-source NMR spec-
tra databases BMRB [6] and NMRShiftDB [7], with missing data augmented
from magnetically equivalent nuclei detected using RDKit [8]. Further, miss-
ing spectral information was augmented by predicting the NMR spectra of the
respective components using the open-source tool NMRium [9].

The model proposed in this work to classify 13 structural groups from NMR
spectra combines an invariant and equivariant DSM architecture. In the first
step, the information from multiple NMR measurements is processed to obtain
an intermediate prediction for each structural group invariant to the permutation
of the input order. In the second step, the intermediate predictions are refined
in the context of all structural groups in the mixture and assigned to signals in
the 13C NMR spectrum, ensuring equivariant classification results.

3 Results

Figure 2 displays the model’s performance regarding the F1-score for predicting
the structural groups from 10% of the pure-component NMR spectra, randomly
chosen as test data. The model shows overall good performance, reaching a
macroscopic F1-score F1,macro = 0.92. Although the model was trained only on
pure-component data, it also applies to NMR spectra of unknown mixtures.



To demonstrate the transferability to mixture spectra, Figure 3a and Fig-
ure 3b show the model predictions for a test mixture of diethyl ether, butanal,
and butyl acetate as an example. The proposed model correctly identifies all
structural groups contained in the mixture, additionally presenting the confi-
dence for classifying the signals into the different structural groups.

Fig. 2. F1 test scores (specified and color-coded) of the DSM for the classification of
13C signals in the respective segments of the pure-component 13C spectra.
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Fig. 3a. Assignment of the predicted structural groups by the DSM to the respective
signals in the 13C spectrum of a test mixture of diethyl ether, butanal, and butyl
actetate.



Fig. 3b. Comparison of the predicted structural groups by the DSM to the true mix-
ture composition (ground truth) of a test mixture of diethyl ether, butanal, and butyl
actetate.

4 Conclusion

This work introduces a novel fingerprinting method based on a deep set model
(DSM) for automatically analyzing unknown mixtures using standard NMR ex-
periments. By incorporating invariant and equivariant network architectures, the
DSM ensures prediction results independent of input size and order permutation,
making it a versatile tool for different situations. Trained on NMR spectra of
pure components, augmented with synthetic spectral data, the model achieves
high-performance scores on unseen test data and demonstrates excellent per-
formance in identifying structural groups from NMR spectra of measured test
mixtures.
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