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Abstract. Numerical simulations can be a bottleneck for computational
fluid dynamics (CFD) based optimization. To address this, we devel-
oped a convolutional neural network (CNN) surrogate model to predict
thermo-hydraulic performance in structured channels under a laminar
flow regime [1]. Our model targets are the total drag and net heat trans-
fer rate, characterized using the non-dimensional parameters drag coef-
ficient Cy and Stanton number St respectively. The significant speed-up
from the CNN model is then utilized with particle swarm optimization
(PSO) to explore the high-dimensional parameter space of structured
channel geometry for three different objective functions: minimizing C,
maximizing St, and maximizing the overall thermo-hydraulic efficiency
described by the ratio of St/Cy [2|. This extended abstract focuses on
understanding the optimized geometries obtained from the CNN-PSO
approach using the explainable deep learning (XAI) tool, SHapley Ad-
ditive Explanations (SHAP) [3].
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1 Introduction

In the field of engineering, optimizing the shape and topology of heat transfer
devices holds immense significance, spanning from electronic cooling applications
to power generation sectors. However, the efficacy of CFD-based optimization
approaches is often hindered by the significant computational time required for
numerical simulations. These simulations can vary from a few seconds to several
weeks to achieve converged solutions, posing a significant bottleneck. To address
these challenges, we leverage surrogate modelling with machine learning (ML).
For the design of a surrogate ML model, we considered a generic heat ex-
changer, which can be conceptualized as an internal flow between structured
walls (refer Fig. 1). Although an analytical solution exists for laminar flow be-
tween flat walls, numerical simulations are necessary to determine the thermo-
hydraulic performance of internal flows if wall structuring is present. We aim
to design an ML model capable of predicting the thermo-hydraulic behaviour of
such systems if an arbitrary structure of a channel wall is given as an input.
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Fig. 1: Laminar channel flow with imposed wall structuring [1, 2].

For this purpose, we selected CNN

due to its inherent ability to handle 30 ‘

grid-like data. The regression CNN 25 A L
uses a standard architecture with con- syl

volutional, activation, max-pooling,
and fully connected layers. Training
hyperparameters are detailed in our
paper [1]. To train the CNN model
we generated approximately 10,000
labelled structures. The dataset was
generated using the spectral solver
SIMSON [5]. The global quantities of

interest, drag coefficient C'y and Stan- Fig. 2: Evolution of the three objective

ton number St are obtained by solv-  functions over 1000 generations [2].
ing the incompressible Navier-Stokes

equation and the scalar transport
equation for temperature. After train-
ing, the CNN model accurately predicted C'y and St values in under 100 ms per
input geometry, significantly faster than numerical simulations, which take ap-
proximately 20-30 minutes per channel geometry (refer [1] for hardware details).
We then combined the CNN-based ML model with PSO to explore the high-
dimensional parameter space of structured channel geometry for three different
objective functions: min. C'y, max. St, and max. St/C} [2]. These three distinct
PSOs are run with the same initial population of particles (which translates into
the same initial geometry) to enable a consistent comparison of the results. The
evolution of the corresponding three objective functions is shown in Fig. 2. Our
study showed that min. C; leads to the trivial solution of a flat channel. In
contrast, the St-maximized geometry achieves nearly a 250% increase in heat
transfer, while the St/C; -maximized geometry achieves a 15% improvement
in overall efficiency compared to the reference flat channel geometry. The mean
velocity and temperature for these optimised geometries are shown in Fig. 3. This
extended abstract focuses on understanding the optimized geometries obtained
from the CNN-PSO approach using the XAI tool called SHAP [3], that can be
used for classical statistical models as well as complex ML models [4].
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Fig. 3: Mean velocity |u;| and temperature 6 for St- (top) and St/Cr-maximized
(bottom) geometry [2].
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(a) Cy-minimized (b) St-maximized

Fig.4: The left plots show the local distribution of SHAP values for Cy in the
C'y-minimized structure, while the right plots show SHAP values for St in the St-
maximized structure. Rows correspond to generations [1, 10, 1000] (refer Fig. 2).
A nonlinear color bar is utilized for enhanced visualization; nevertheless, a linear
scale is employed within the range of —1073 to 1072 to prevent the plot from
diverging near zero.

2 Explainable deep learning (XAI)

For a given structured channel geometry, it is valuable to identify how local
geometric features influence the CNN’s predictions of total drag and net heat
transfer rate (i.e. C'y and St). This so-called attribution problem [4] can be ad-
dressed by calculating the expected marginal contribution of each pixel in the
channel geometry using the SHAP framework (3, 4]. SHAP values thus provide a
means to quantify the impact of each pixel, allowing the user to understand how
geometric features contribute to the overall predictions. The SHAP values are
computed using the CNN model alongside a distribution of background samples.
We aim to understand how C; and St change relative to a flat channel configu-
ration. Hence, we used 90 flat channels located symmetrically or asymmetrically
about y = ¢ (refer Fig. 1) as background samples. It is important to note that
the summation of the SHAP values should be equal to the difference between
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(a) Generation 1 (b) Generation 5
(c) Generation 10 (d) Generation 1000

Fig.5: The local distribution of the difference between the SHAP values, SHAP
St - SHAP (4, for St/Cj-maximized geometry.

Table 1: Shap hypothesis check for the structures.

2(Cy) | 2(S1) || p(Cy) | p(SE) |[(p(Cy))|(P(SE))
min. Cy ||-0.0324[-0.0418][-0.7236-0.5383[-0.6912|-0.4964
max. St || 28.22 | 37.85 || 27.53 | 37.35 ||-0.6912|-0.4964
max. St/Cy|/0.1850| 3.64 ||-0.5062|3.1498 ||-0.6912 |-0.4964

the model prediction for the given structure, denoted as p(s), and the mean pre-
diction derived from the background samples, represented as (p(s)). This can be
expressed as

Sum shap, X'(s) = p(s) — (p(s)) , (1)
where the scaled mean prediction (i.e. (p(s)) value) for C'y and St are obtained
as —0.6912 and —0.4964 respectively. Corresponding values for the optimised
geometries are tabulated in Table 1.

The local distribution of SHAP values for C'y and St-optimized structures are
shown in Fig. 4. Figure 4a demonstrates that any deviation from a flat channel
increases C. In contrast, Fig. 4b indicates that even though undulations in the
wall in general increase St it also depends on the flow physics - like the presence
of recirculation regions in the flow domain (refer Fig. 3). SHAP value distribution
of St/C;-maximised structures shown in Fig. 5 also confirms the same.

3 Conclusion and Outlook

Using an explainable deep learning tool called SHAP we analysed the optimized
geometries from CNN-augmented particle swarm optimization. The SHAP value
analysis (refer Figures 4 and 5) illustrates that SHAP values can act as a measure
of sensitivity, suggesting the potential for conducting PSO optimization based
on SHAP value-driven sensitivity analysis, rather than explicitly optimizing for
C'y or St values. This approach will be investigated in future studies. Addition-
ally, we will explore the relationship between SHAP value distributions and the
underlying physics of the problems as the next step in our research.
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