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Abstract. This work evaluates comprehensively and analyzes modern
unsupervised (deep-learning-based) anomaly detection methods operat-
ing on chemical process data. We use the Tennessee Eastman process
dataset, which has been the benchmark data set for chemical process data
for nearly three decades. This extensive study will examine anomaly de-
tection methods in industrial applications to determine their best choice.
The benchmark results let us conclude that reconstruction-based meth-
ods are superior, followed by variational autoencoders, GAN networks,
and forecasting-based methods. We extend our evaluation of Hartung et
al. by several shallow baseline methods.
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1 Introduction

Detecting data deviating from normality - Anomaly detection (AD) - is crucial
in several application domains, from identifying social media bots and fake on-
line reviews to crucial medical and industrial applications, e.g., tumor and fault
detection. AD is highly important, especially in safety-critical applications like
chemical plants, where failing to recognize anomalies may lead to serious failures,
injuries, or even worse. Consequently, much literature on machine learning and
AD in chemical processes has been published [4, 28, 44]. Since its introduction
⋆ This work is a shortened version but with added baseline evaluations of a previously

published journal article by the same authors [13].



three decades ago, the Tennessee Eastman process (TEP) has been established
as a standard litmus test for learning-based AD on chemical process data. Most
of the new methods are benchmarked on its dataset [8,37]. However, the majority
(excluding [3, 4, 30, 34, 45, 49]) of scientific publications evaluate mostly shallow
unsupervised anomaly detection methods but do not include neural networks.
Since deep neural networks have enabled most of the progress in artificial in-
telligence during the last 12 years, we propose that shallow machine learning is
inadequate for complex, structured data like chemical processes.

Early papers about deep AD on times series (TS) were mostly based on
reconstruction [2, 14, 16, 17, 23, 24, 27, 47, 50, 51] or forecasting objectives [6, 9,
15, 25, 29] only. But there is another class of AD methods based on generative
models–variational autoencoders (VAEs) [12, 20, 32, 43, 46, 48] and generative
adversarial neural networks (GANs) [5,10,19,21,31,39,53]. To get the best parts
from all worlds, some hybrid methods combine the above techniques [40, 52].
Adapting the success of supervised classifiers, “one-class classification” trains a
network in a way that normal samples are concentrated to a hypersphere [38] or
hyperplane [41]. This has recently been applied for AD on TS [40, 42]. A more
direct application of classifiers relies on “auxiliary anomalies” [22,35] or actively
querying anomaly labels [18]. Goyal et al. [11] trained a network to distinguish
normal training data from synthetically generated anomalies. One of the newest
concepts of TS-AD is using self-supervised learning and designing an auxiliary
training objective like predicting which transformation was applied to data [36].

With the present work, we intend to evaluate the above-mentioned deep AD
approaches on the TEP. This work is an extension of the evaluation of Hartung
et al. with its wide range of 27 unsupervised deep AD methods for TS regarding
their detection accuracy on the TEP data. We added three shallow methods as
baselines. This analysis represents the first - and by far the most comprehensive -
evaluation of modern unsupervised AD methods on chemical process data. The
results of this study also provide sound advice on which AD methods might
best perform on real chemical process data. With the goal of autonomizing the
running of chemical processes, establishing deep AD in these would open the
route for new, yet unexplored, ways to control them and increase safety and
profit for industrial applications and workers.

2 Benchmarking Deep TS-AD on TEP

The TEP is a process simulation of a chemical plant [26]. We use a version of
its data available online [1] and referenced in [37]. It provides 20 different types
of anomalies and corresponding simulations of 53 parameters - generated every
three minutes for 25 hours for training data and 48 hours for test data.

To evaluate the examined algorithms on the TEP, we compare the F1-score
and area under the precision-recall curve (AUPRC). Both are the most com-
monly used metrics in AD. Anomaly detectors generate an anomaly score for
each point of a TS. If it exceeds a learned threshold score, the point in time is
considered anomalous. The proportion of correctly detected anomalies is called



precision. Meanwhile, recall means the proportion of correctly detected anoma-
lies among all true anomalies. Combining precision and recall in one metric yields
the F1-score, which can be calculated at every single point of the TS. The total
F1-score averages all single F1-scores over the whole TS. Given a dataset and
the ordering of all data points regarding a binary decision value, in our case de-
rived from the anomaly score, the precision-recall curve plots for every possible
threshold the respective precision against the recall. The AUPRC is a general
measure of a model’s performance.

We implemented all methods in the same Python environment for an equal
and fair comparison and used PyTorch [33] for training and evaluation. After
separating a quarter of the training dataset for methods requiring an unlabeled
validation set, the test dataset was divided into five equal-sized folds. The re-
maining folds were then used for the evaluation, excluding neighboring folds to
avoid time dependencies. Finally, the performance in F1-Score and AUPRC over
these folds was averaged. For a fair comparison and hyperparameter tuning, the
size of each method’s parameter grid was chosen to ensure a training and eval-
uation time of 24 hours for every method. We use two thresholding methods as
shallow baselines based on the interquartile range (IQR) and the min and max
in the training data (OOS), respectively. We also include a baseline using the
distance to the mean weighted by feature variance (WMD). Table 1 shows the
implemented methods with reference to their publications, performance results,
and rankings.

3 Discussion and Conclusion

The results mark reconstruction-based methods as the best performers on aver-
age, although one GAN method (BeatGAN) ranks best. On average, the gen-
erative methods rank in midfield - VAE performing better than GAN - and
the forecasting-based and hybrid methods performing worse than the rest. Both
metrics show similar results except for GMM-GRU-VAE, LSTM-AE-OC-SVM,
and TCN-S2S-P. Since all deep methods achieve scores higher than the three
shallow methods, we conclude that more complex multivariate TS - especially in
chemical processes - need deep methods to correctly detect all kinds of anomalies.

Considering future work, the TEP data is synthetic, and real data is prefer-
able. However, no widely accepted benchmark of real-world data is available yet.
All methods achieved high scores of 0.9 and above. This could be caused by the
synthetic data with defined faults placed in a fault-free run. It will be interesting
to compare this evaluation with real-world data in the future. The challenge here
will be uncovering the data and correctly labeling its anomalies. Even though
the F1-score and AUPRC are state of the art for comparison, they lack assessing
more extended periods and some typical characteristics of TS [7,17].

This benchmark can guide further research and practitioners in choosing a
method for AD on chemical TS.



Table 1. This table shows the performance of all evaluated methods. The table lists
each method’s reference, the best F1-score, and the best AUPRC for each method. The
table lists the ranking according to the F1-score, AUPRC, and mean. The methods are
sorted according to the best mean of F1-score and AUPRC.

Method Method
Type

F1-
Score

F1-
Score
Rank

AUPRC AUPRC
Rank

Total
Rank

BeatGAN [53] GAN 0.9699 1 0.9896 2 1
TCN-S2S-AE [47] Reconstr. 0.9632 3 0.9914 1 2
Dense-AE [2] Reconstr. 0.9631 4 0.9880 3 3
LSTM-AE [24] Reconstr. 0.9506 5 0.9861 4 4
LSTM-P [25] Forecasting 0.9693 2 0.9824 8 5
MSCRED [51] Reconstr. 0.9353 7 0.9842 5 6
Donut [48] VAE 0.9450 6 0.9829 7 7
LSTM-VAE [43] VAE 0.9334 11 0.9831 6 8
OmniAnomaly [46] VAE 0.9336 9 0.9808 12 9
SIS-VAE [20] VAE 0.9335 10 0.9790 14 10
Untrained-LSTM-AE [17] Reconstr. 0.9333 13 0.9792 13 11
LSTM-DVAE [32] VAE 0.9333 16 0.9811 11 12
USAD [2] Reconstr. 0.9333 12 0.9779 16 13
GMM-GRU-VAE [12] VAE 0.9291 21 0.9815 10 14
TCN-S2S-P [15] Forecasting 0.9172 23 0.9821 9 15
LSTM-MAX-AE [27] Reconstr. 0.9333 18 0.9786 15 16
LSTM-AE-OC-SVM [40] Hybrid 0.9337 8 0.9511 26 17
LSTM-VAE-GAN [31] GAN 0.9333 14 0.9735 20 17
GenAD [16] Reconstr. 0.9333 19 0.9755 19 19
TadGAN [10] GAN 0.9333 15 0.9690 23 19
STGAT-MAD [50] Reconstr. 0.9267 22 0.9767 17 21
Mad-GAN [19] GAN 0.9333 17 0.9621 24 22
MTAD-GAT [52] Hybrid 0.9097 25 0.9758 18 23
DeepANT/TCN-P [29] Forecasting 0.9114 24 0.9712 22 24
GDN [6] Forecasting 0.9078 26 0.9722 21 25
LSTM-2S2-P [9] Forecasting 0.9327 20 0.9171 27 25
THOC [42] Hybrid 0.9074 27 0.9618 25 27
WMD Baseline 0.8956 29 0.8563 28 28
OOS Baseline 0.8956 28 0.8203 29 29
IQR Baseline 0.8956 29 0.8125 30 30
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