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Abstract. We propose a hybrid tensor completion method as a novel
approach for predicting temperature-dependent diffusion coefficients, im-
proving the scope and accuracy of existing models. Furthermore, we
study active learning (AL) strategies for efficiently improving the predic-
tions by purposefully planning and measuring diffusion coefficients with
NMR spectroscopy. The results show that while AL enables significant
improvements in a synthetic example, only a minor effect is observed in
the experimental scenario.

1 Introduction

Information on the diffusion coefficients is essential in chemical engineering for
modeling transport phenomena and simulating thermal separation processes.
Unfortunately, experimental data are scarce, especially for mixtures; thus, mod-
els for predicting diffusion coefficients in mixtures are paramount in practice.
Several prediction methods for this purpose, mainly semi-empirical, have been
proposed in the literature [1, 2], but they all have significant limitations, includ-
ing small scope and poor accuracy. For predicting diffusion coefficients in binary
mixtures, matrix completion methods (MCMs) from machine learning (ML) are
a fascinating option [2–4], exploiting that the properties of binary mixtures can
be represented in matrices where the rows and columns denote the mixture com-
ponents with many unobserved entries in most cases, cf. Fig. 1; the MCM is then
trained to predict missing entries, i.e., properties of unstudied mixtures [2].

However, while MCMs have been shown to outperform all current benchmark
models for predicting diffusion coefficients [2], they suffer from two limitations:
they are restricted to a single temperature, i.e., they cannot describe the tem-
perature dependence of diffusion coefficients, and they heavily rely on reliable
experimental data for training, which is often not available. In this work, we ad-
dress both limitations by developing novel tensor completion methods (TCMs)
capturing the temperature dependence of diffusion coefficients and studying ac-
tive learning (AL) strategies [5] for purposefully planning diffusion measurements
by pulsed-field gradient (PFG) nuclear magnetic resonance (NMR) spectroscopy
[6, 7].
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(a) 298 K (b) 313 K (c) 333 K

Fig. 1: Available experimental data for binary liquid-phase diffusion coefficients
D∞

ijk at infinite dilution and three temperatures [2, 8].

2 Methods

2.1 Tensor Completion

We propose a TCM for predicting temperature-dependent diffusion coefficients
of solutes i at infinite dilution D∞

ijk in solvents j at temperatures k. For this
purpose, we arrange the available experimental data from the Dortmund Data
Bank [8] for 298, 313, and 333 K (cf. Fig. 1) in a three-dimensional tensor. This
tensor contains D∞

ijk for 27 solvents and 40 solutes, representing the first two
dimensions of the tensor, while the third dimension represents the temperature.
We use Tucker decomposition to factorize the tensor:

lnD∞
ijk =

ri∑
α=1

rj∑
β=1

rk∑
γ=1

A(i, α) ·B(j, β) · C(k, γ) · κ(α, β, γ) (1)

A, B, and C are feature matrices of solute, solvent, and temperature, respec-
tively, learned during training, while ri, rj , and rk are their respective feature
dimensions. κ is the core tensor used in Tucker decomposition, which introduces
additional flexibility as it allows different feature dimensions. Based on the re-
sults of preliminary tests, the hyperparameters were set to ri = rj = rk = 2.

We use a probabilistic approach based on a Cauchy likelihood to train the
model, which was implemented using the probabilistic programming language
Stan [9]. Besides experimental data, we also use synthetic data from the SEGWE
model [1] for training the TCM, which we incorporate as prior knowledge. The
proposed model has a computation time of a few seconds and is thus very
resource-friendly compared to contemporary ML models.

2.2 Active Learning

The experimental database for training the TCM was substantially extended
by measuring diffusion coefficients with PFG NMR spectroscopy. AL strategies
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were employed to select the most promising experiments and use the experimen-
tal resources as efficiently as possible [5]. In our AL workflow, we sequentially
train the model on the training data, use a query strategy to select a new data
point, measure it via NMR spectroscopy, and add the new data point to the
training data. We thereby iteratively extend the training database and use it for
retraining the model.

The query strategy at the core of the AL approach is essential as it defines
on which basis the subsequent measurement is planned. In this work, we first
systematically investigated established query strategies on a synthetic data set
consisting of predictions from the SEGWE model at 298 K [1]. The tested strate-
gies were random sampling, uncertainty sampling, maximum entropy sampling,
and query-by-committee [5]. For this purpose, 15 % of the synthetic data were
defined as the initial training set, 70 % were considered as the pool from which
the AL approach can sample, and the remaining 15 % were used as the test set.

3 Results and Discussion

3.1 Testing Query Strategies on Synthetic Data

Fig. 2 shows the results for applying the AL approach based on different query
strategies to the synthetic data set. Specifically, it shows the relative mean ab-
solute error (rMAE) of the MCM on the test set after training on training sets
of different sizes, denoted by the share of observed entries in the matrix.

Fig. 2: rMAE of an MCM for reconstructing a synthetic data set for D∞
ijk at

298 K over the growing training set using different query strategies.

In all cases, the prediction error decreases with increasing percentage of ob-
served entries. Uncertainty sampling proved the most efficient of the studied
query strategies, while the other query strategies did not perform significantly
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better than random sampling. For this reason, uncertainty sampling was subse-
quently used to plan actual experiments.

3.2 Diffusion Coefficient Prediction with TCM

Fig. 3 shows the results of the TCM for predicting diffusion coefficients and
applying AL based on using uncertainty sampling. Specifically, it shows the
rMAE and relative mean squared error (rMSE) of the TCM for each temperature
calculated using leave-one-out analysis after training on training sets of growing
size, denoted by the number of new data points at each temperature.

(a) 298 K (b) 313 K (c) 333 K

Fig. 3: rMAE and rMSE of the temperature-dependent prediction of D∞
ijk by

TCM as a function of the additional training data points chosen by uncertainty
sampling and measured in this work. Scores calculated by leave-one-out analysis.

The TCM (symbols in Fig. 3) shows significantly higher prediction accuracy
than the established benchmark model SEGWE [1] (lines in Fig. 3) in both error
scores at all temperatures. However, the additional data measured in this work
did not significantly reduce the TCM prediction errors. Since only approx. 18%
of the binary systems are studied, an improved accuracy could be expected, cf.
Fig. 2. Hence, a direct transfer from synthetic to experimental data may not be
feasible. One possible reason for the results is that the size of the experimental
data set is too small to show the model’s generalization ability and power of AL.

4 Conclusions

In the present work, we introduce a novel approach for predicting tempera-
ture dependent diffusion coefficients, combining the established semi-empirical
SEGWE model with a TCM to a hybrid model. The hybrid TCM gives signifi-
cantly more accurate predictions than the established benchmark. Regarding AL,
we found in a study using synthetic data that the best performance gain could
be realized using uncertainty sampling as the query strategy. Subsequently, we
used uncertainty sampling to purposefully extend the existing experimental for
diffusion coefficients, which, however, only marginally improved the performance
of the TCM trained on that data further.
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