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Abstract. This paper presents the first comprehensive evaluation and
analysis of modern deep-learning-based anomaly classification (AC) meth-
ods applied to chemical process data. The focus is on the Tennessee East-
man process (TEP) dataset, which includes simulations of 20 distinct
types of process faults. This dataset is widely recognized as a benchmark
for evaluating anomaly detection methods on chemical process data. Af-
ter detecting a fault in a plant, the crucial task is to identify the type
of fault. From a machine learning perspective, process data are time-
series well suited for analysis using deep-learning architectures, which
have been driving breakthroughs such as ChatGPT. This paper eval-
uates the application of contemporary deep-learning-based time-series
classification methods applied to chemical process data. The findings of
this study may represent a significant step toward classifying anomalies
in chemical plants.
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1 Introduction

Identifying data that deviates from the typical pattern—so-called anomalies—is
a fundamental technique in machine learning and artificial intelligence. Anomaly
detection (AD) is significant in various application areas, from identifying fake
reviews in e-commerce and detecting bots on social networks to diagnosing tu-
mors and monitoring industrial faults [22, 23, 30]. AD is especially relevant in
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safety-critical applications. For instance, failing to detect anomalies in a chemi-
cal plant or diagnose a malicious tumor in a patient puts lives at risk.

In chemical plants, data is predominantly collected during normal, fault-free
operations. Anomalies are rare and can often be mistaken for normal behavior by
process or control engineers. This is where computational methods, particularly
machine learning, become essential. These methods can sift through massive
datasets to accurately identify rare anomalies [9]. The literature on learning-
based AD in chemical processes is extensive [13,25,33]. The Tennessee Eastman
Process (TEP) has established itself as a standard benchmark for evaluating
new anomaly detection techniques on chemical process data. Created by Downs
and Vogel [8] using a model-based TEP simulator, Rieth later modified the TEP
dataset [29], and now, most novel methods are evaluated on the TEP dataset.

However, AD is only the first step. After detecting an anomaly in a dataset,
the crucial next step is determining the specific type of anomaly. This task of
anomaly classification (AC)—also called fault diagnosis in engineering—is a
well-known problem in the machine-learning community. From a mathemati-
cal perspective, AC aims to distinguish one anomaly from another. Achieving
this opens up more in-depth knowledge about the data features, offers further
analysis, and makes weighing different anomaly types possible. On the other
hand, from a more practical point of view, since we consider the case of chemi-
cal engineering in this paper, for any plant operator, it is essential to diagnose a
detected anomaly to determine the cause of the problem. This is particularly sig-
nificant in complex industrial processes, such as those in chemical plants, where
a precise classification is necessary to implement appropriate corrective actions.
From a machine-learning perspective, this is a multiclass classification problem
on multivariate time-series. Traditional anomaly detection methods are adept
at flagging anomalies but fall short in categorizing them, which is essential for
accurate diagnosis and resolution of the issue. Effective AC can provide deeper
insights into the underlying causes of the detected anomalies, facilitating better
decision-making and maintenance strategies [4, 7, 36].

Some research has been done on the AC of the TEP dataset, often relying
on simple and shallow methods. Early studies investigated linear models and
basic machine learning techniques, which struggle with the TEP data’s highly
non-linear and dynamic nature. Principle Component Analysis (PCA) and k-
nearest Neighbors (k-NN) have been studied. However, they lack the robustness
and accuracy required for complex AC tasks in industrial settings [4].

With the advent of deep learning, the classification of time-series data has
been significantly improved. Deep learning models such as Convolutional Neural
networks (CNNs) and Recurrent Neural Networks (RNNs) have shown superior
performance in capturing the intricate temporal and spatial dependencies present
in time-series data [5, 12, 21, 31]. Recently, self-attention mechanisms have been
inserted into deep models, resulting in powerful transformer architectures and
ultimately driving advances such as Chat-GPT. Transformers have also emerged
as a powerful tool for time-series classification thanks to their ability to model
long-range dependencies [16, 35]. The ability of transformer models to handle
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large and high-dimensional data makes them particularly suited for industrial
applications where precise AC is crucial [35].

This benchmark evaluation presents the first and most comprehensive com-
parison of modern AC methods on chemical process data, including evaluations
of many methods based on deep learning. This analysis also yields insights into
which classification methods might most suitably apply to chemical process data.
Establishing reliable methods for this classification task will open new ways to
control these processes in the future to increase the safety and reliability of
chemical plants. It will open new perspectives on the autonomous running of
chemical processes.

The main contributions of this paper are as follows.

– This work identifies AC as the logical follow-up of the anomaly detection
problem and evaluates numerous deep and shallow methods for this purpose.

– In a comprehensive analysis, 27 combinations of various classification meth-
ods and dimensionality reduction preprocessing are evaluated and ranked
according to their average F1-Score.

– The analysis reveals that several deep-learning-based methodologies exhibit
superior F1-Score in AC compared to their shallow counterparts. This under-
scores the necessity for sophisticated multivariate time-series classification
techniques in the domain of chemical process data.

2 Related Work

Early methods in diagnosing faults in TEP data include Principal Component
Analysis (PCA) based techniques and Fisher discriminant analysis (FDA) [4].
More recently, Bayesian networks have been studied. Verron et al. [36] first iden-
tified important variables by computing the mutual information between each
process variable and the class variable. Then, a Bayesian classifier known as a
tree-augmented network (TAN) was used to classify the faulty process. However,
the new faults could not be classified since the classification was done using the
reduced space of variables. Santos et al. [7] proposed a dynamic Markov blanket
classifier to find relationships among the most relevant variables without any
variable selection method.

Traditional approaches to anomaly detection on the TEP dataset often in-
volved statistical methods and linear models, such as PCA and Partial Least
Squares (PLS), which were used to monitor process variables and detect devia-
tions indicative of faults [32]. Yin et al. [39] evaluated various methods, including
PCA, PLS, independent component analysis (ICA), FDA, and subspace-aided
approach (SAP) on TEP data. However, these methods typically struggle with
capturing non-linear relationships in the data. Recent advancements have in-
cluded adopting machine learning and deep learning techniques to improve the
accuracy and robustness of anomaly detection in the TEP dataset. A few stud-
ies exist where the auto-associative neural networks (autoencoders - AE) have
been used for fault detection [17,38,42]. However, they were not comparable be-
cause of the difference in hyperparameter settings, training objective functions,
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and the number of training samples. In addition, the principal components ex-
tracted from auto-associative neural networks were sometimes redundant due to
co-adaptation in the early phase of training [20]. The objective of this work is
to address these limitations. Heo et al. [11] evaluated these methods to address
all their limitations. Sun et al. [34] proposed a probabilistic fault detection using
Bayesian recurrent neural networks (BRNNs) with variational dropout, capable
of modeling complex non-linear dependencies. AEs and variational autoencoders
(VAEs) have also been used extensively for fault detection. Zhu et al. [43] applied
VAEs to identify the deviation process from the normal ones. In contrast, Yu
et al. [40] integrated convolutional neural networks (CNNs) and gated recurrent
units (GRUs) within an autoencoder framework to capture both spatial and tem-
poral features from the TEP data. Finally, Hartung et al. [9] extensively studied
27 anomaly detection methods on TEP data and concluded that reconstruction-
based, generative, and forecasting-based methods were particularly effective.

Multiclass classification on time-series data involves predicting one of several
possible labels for each instance, where each label represents a distinct class.
Traditional multiclass classification methods on time-series data rely on measur-
ing the sequence similarity techniques, such as Dynamic Time Warping (DTW)
and k-nearest neighbors (k-NN), often fail on high-dimensional and complex
datasets due to their reliance on sequence similarity techniques [2]. Feature-
based approaches apply a feature extraction method followed by classification
algorithms such as Random Forests or Support Vector Machines [2], which may
improve classification accuracy but still face challenges in capturing temporal
dependencies. The emergence of deep learning marked a paradigm shift with
Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM)
networks. Fawaz et al. and Wang et al. [15, 37] demonstrated that LSTM and
CNNs have superior performance by leveraging their ability to model intricate
patterns over time. More recently, Zervaes et al. [41] used transformer models to
effectively model long-range dependencies using self-attention mechanisms. Cui
et al. [6] proposed a novel Multi-Scale Convolutional Neural Networks (MCNNs),
which integrated CNNs with attention mechanisms to enhance classification per-
formance by capturing local and global patterns.

3 Benchmarking (modern) Time-series Classification
Methods on the TEP

In this section, we begin by introducing the TEP dataset, followed by a review of
the methods, including their implementation and evaluation. Finally, we present
the results.

3.1 The Tennessee Eastman Process dataset

TEP dataset is a widely recognized benchmark in process control and fault
diagnosis [28]. The TEP simulates a chemical production process, generating
data that includes various normal and faulty operational states. The dataset
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contains a variety of variables that capture the dynamics of the process, including
pressures, temperatures, and flow rates. Each record in the dataset is tagged
with a fault number (0 for fault-free, 1-20 for faulty runs), representing the
various issues introduced into the system. We will only focus on the 20 fault
classes. This dataset is essential in developing and evaluating anomaly detection
and classification algorithms due to its complexity and realistic reproduction of
industrial scenarios.

3.2 Methods

This study compares several modern time-series classification methods to bench-
mark their performance on the TEP dataset. The methods include:

– LSTM-FCN: The Long Short-Term Memory Fully Convolutional Network
[19] is a hybrid model that combines the strengths of LSTMs for capturing
temporal dependencies and CNNs for feature extraction.

– Deep CNN: Deep Convolutional Neural Networks [1] are powerful for
image-like data processing.

– TCN: Temporal Convolutional Networks [10] are effective for sequential
data, offering long memory and stable gradients.

– RNN: Recurrent Neural Networks [24] are suitable for time-series data due
to their sequential nature.

– LSTM: Long Short-Term Memory Networks [12] address the vanishing gra-
dient problem in RNNs, making them practical for long-term dependencies.

– XGBoost: XGBoost [27] is a gradient-boosting framework known for its
high performance with structured data.

– Random Forest: Random Forest [26] is an ensemble learning method that
operates by constructing multiple decision trees.

– SVM: A Support Vector Machine [14] is a model used for classification
and regression tasks, capable of finding optimal decision boundaries between
different classes.

– WaveNet: WaveNet [18], initially designed for audio synthesis, is applied
here for time-series classification.

3.3 Implementation Details

In the pre-processing phase, the data was scaled using StandardScaler, so all
features have a mean zero and a unit variance. Afterward, all data was reshaped
for sequence-based models into sequences of 500 timestamps for training and 960
timestamps for testing. The scaled data was aggregated for aggregation-based
models by averaging features over fixed-length windows. This approach reduces
the dimensionality and provides summary statistics for each window. Eventually,
Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA)
were applied as specified for further dimensionality reduction (DR). PCA re-
tained the most significant components, while LDA maximized class separability.
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Dimensionality Reduction with PCA and LDA Dimensionality reduction plays
a critical role in enhancing the performance of anomaly classification methods,
particularly PCA and LDA. PCA and LDA contribute significantly to improving
anomaly classification methods’ efficacy by transforming high-dimensional TEP
data into more informative and compact representations.

Each method underwent the same pre-processing procedure, followed by a
grid search to fine-tune their hyperparameters. The optimal hyperparameters
were chosen based on the training accuracy, and subsequently, the test data was
used to evaluate performance.

3.4 Evaluation Metric

To compare and evaluate the performance of the classification models, the clas-
sification report library was used, which includes precision, recall, and F1-Score
for each class, offering a comprehensive view of the model’s performance across
all fault types.
Using a standard evaluation metric across all methods is crucial for fair com-
parison. The F1-Score is used as the primary metric in this study, as it balances
precision and recall, providing a comprehensive measure of model performance,
especially on imbalanced datasets.

3.5 Results

Table 1 summarizes the experiments’ results.
The LSTM-FCN model consistently achieved competitive performance across

all feature extraction and dimensionality reduction methods and was ranked first
in the average F1-score. Deep CNN and TCN also showed strong performance,
highlighting their ability to handle complex data patterns. Traditional machine
learning models such as XGBoost and Random Forest showed competitive results
but were generally outperformed by the deep learning approaches concerning
F1-score and accuracy. These results underscore the importance of leveraging
advanced time-series models for complex datasets like TEP. Future work could
explore hybrid models and optimize the architectures to improve performance.
Also, we see that PCA is not a suitable dimensionality reduction method here,
as the F1-Score decreased for every model when applied before training. The
same does not hold for LDA.

In addition to the above findings, it is noteworthy that WaveNet exhibited
overfitting tendencies on the TEP dataset. Despite achieving an initial high ac-
curacy in training (over 0.90), its F1-Score on the test set was notably lower, at
an average of 0.57. This discrepancy suggests that WaveNet may have struggled
to generalize effectively to unseen data even if Regularizer, BatchNormalization,
and dropout layers have been applied. This highlights the importance of address-
ing overfitting in model training and evaluation strategies for future studies.
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Table 1. Performance Comparison of AC Methods on TEP Dataset showing deep
learning methods outperforming traditional machine learning methods. The evaluation
was done without further dimensionality reduction (DR) and with DR using PCA and
LDA. The average result for all three DR options was computed for every method to
receive a comparable ranking.

Model Preprocess DR F1-Score Rank AVG F1 AVG Rank

No DR 0.90 6

LSTM-FCN reshaped PCA 0.89 9 0.92 1

LDA 0.98 1

No DR 0.96 2

Deep CNN reshaped PCA 0.86 12 0.91 2

LDA 0.91 4

No DR 0.90 6

TCN reshaped PCA 0.89 9 0.91 3

LDA 0.93 3

No DR 0.90 6

RNN reshaped PCA 0.78 14 0.86 4

LDA 0.91 4

No DR 0.84 13

LSTM reshaped PCA 0.71 19 0.81 5

LDA 0.88 11

No DR 0.72 18

XGBoost aggregated PCA 0.66 21 0.71 6

LDA 0.74 16

No DR 0.70 20

Random Forest aggregated PCA 0.62 23 0.70 7

LDA 0.77 15

No DR 0.62 23

SVM aggregated PCA 0.60 26 0.65 8

LDA 0.73 17

No DR 0.62 23

WaveNet reshaped PCA 0.44 27 0.57 9

LDA 0.66 21
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4 Conclusion and Future Work

In this study, we benchmarked various modern time-series classification meth-
ods on the Tennessee Eastman Process (TEP) dataset, including LSTM-FCN,
Deep CNN, TCN, RNN, LSTM, XGBoost, Random Forest, SVM, and WaveNet.
Our results, summarized in Table 1, indicate that deep learning models, particu-
larly those with sequence-based preprocessing, generally outperform traditional
machine learning approaches.

The LSTM-FCN model with LDA preprocessing achieved the highest F1-
Score of 0.98, demonstrating its effectiveness in capturing temporal dependencies
and distinguishing between the different classes in the TEP dataset. Deep CNN
and TCN models also performed well, particularly when combined with LDA,
highlighting the importance of feature extraction techniques in enhancing model
performance. However, it is noteworthy that PCA did not increase performance
in any model, indicating that not all dimensionality reduction techniques are
equally beneficial for this task.

Traditional machine learning models such as XGBoost, Random Forest, and
SVM, while generally less effective than deep learning models, still provide valu-
able insights. The aggregation preprocessing technique for these models helped
improve their performance, but they were unable to match the accuracy of the
deep learning models.

Future work could explore the integration of hybrid models that combine the
strengths of both deep learning and traditional machine learning approaches.
Further investigation into advanced feature extraction techniques and their im-
pact on model performance could yield even better results. Exploring other
deep learning architectures, such as attention-based models or transformers,
could also provide new insights and improve classification accuracy on the TEP
dataset. Applying transfer learning, where models pre-trained on similar indus-
trial datasets are fine-tuned on the TEP dataset, could be another promising
direction for future research. Moreover, utilizing representation learning on the
TEP dataset can facilitate more accurate identification and classification of pat-
terns within the data, leveraging the intrinsic relationships between samples for
better anomaly classification outcomes [3, 23].
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