
cPAX: Comparative Visualization Of Known And
Novel Anomalies For Monitoring Chemical Plants

Daniel Reinhardt1, Dennis Wagner2, Aparna Muraleedharan4, Justus
Arweiler3, Indra Jungjohann3, Fabian Jirasek3, Jakob Burger4, Hans Hasse3,

Marius Kloft2, and Heike Leitte1

1 Visual Information Analysis, University of Kaiserslautern-Landau
{d.reinhardt,leitte}@rptu.de

2 Machine Learning Group, University of Kaiserslautern-Landau
{dwagner,kloft}@cs.uni-kl.de

3 Laboratory of Engineering Thermodynamics, University of Kaiserslautern-Landau
{justus.arweiler,indra.jungjohann,fabian.jirasek,hans.hasse}@rptu.de

4 Chemical Process Engineering, Technical University of Munich
{aparna.muraleedharan,burger}@tum.de

Abstract. Anomalies in a chemical plant can have disastrous conse-
quences from endangering personnel and the environment to significant
costs caused by damages in the plant. Anomalies need to be identified
and fixed as soon as possible to avoid the harshest consequences. Thus,
online monitoring is essential for a safe and cost-efficient operation. How-
ever, the wealth of information available to operators at any given time
can obscure signs of anomalous behavior. We propose a plant monitoring
system called cPAX (the chemical Plant Anomaly eXplorer) that con-
cisely and intuitively visualizes the data collected from a plant online,
and incorporates anomaly detection methods to visualize the current
state of the plant allowing for comparison with known anomalous sce-
narios. The system integrates a database of known anomaly cases to rank
anomalous scenarios and provide suggestions for the operator. Addition-
ally, the database is set up to incorporate additional information, such
as instructions for fixing the anomaly, to provide more context to the
operator. The system is developed and continuously tested with several
domain experts to provide an effective user experience.

Keywords: Time Series · Anomalies · Visual Analysis · Explainable AI
· Chemical Process Engineering

1 Introduction

Large chemical plants are expensive to build, operate, and maintain. Due to
the complexity of the underlying chemical process, the inevitable degradation of
the equipment, and other external factors, anomalies can occur with potentially
devastating consequences if not addressed properly [21]. Anomalies in operation
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Fig. 1. Full view of the visualization tool at the end of a work flow. The data shown
is the first case in the Tennessee Eastman Process benchmark.

can result in costly damage to the equipment, endanger the lives of the operating
personnel, or deal irreversible damage to the environment, as most hazardous
accidents in chemical plants start off as simple process anomalies [23, 31, 8].
Thus, it is of utmost importance to identify deviations from normal operating
behavior and initiate counter measures as fast as possible. To this end, modern
chemical plants use control systems that consist of physical sensors, strategically
placed in the chemical plant, and software that processes the information from
these sensors and presents the operator with information necessary to identify
anomalies [6]. Due to the wealth of information collectible from any given chem-
ical plant, presenting this information to an operator in a way that they can
easily identify anomalous behavior is a non-trivial task.

In practice, some cases of anomalous behavior are known in advance. Anoma-
lies that have occurred in the past are usually documented and certain anomalies
can be characterized based on the physical constraints of the process itself. Mod-
ern operators could benefit greatly from this additional information, as a complex
solution to a particular anomaly could have already been discovered in the past.
However, existing tools do not integrate such information in the visualizations.
To this end, we work together with domain and Machine Learning (ML) experts
to develop a system called cPAX (the chemical Plant Anomaly eXplorer) as
depicted in fig. 1 that uses additional information and carefully chosen visual-
izations to alert an operator early and suggest solutions to a running anomaly
based on a database of known anomalies.

Additionally, we outline how state-of-the-art anomaly detection methods can
be integrated into cPAX, displaying anomalies in more detail than existing sys-
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tems, and highlighting their localities, in a system with rich interactivity to
identify known anomalies, explain unknown ones, and extending the database
with such new cases over time.

As a proof of concept, we use the publicly available Tennessee Eastman Pro-
cess benchmark dataset5 [19], a widely applied benchmark dataset with a large
variety of anomaly cases including information on their root cause. cPAX is
based on a modular design that allows for the easy integration of novel plants,
as well as customized anomaly detectors and metrics.

The manuscript is structured as follows. In section 2, we discuss related
work. To provide a base with which to work, in section 3 we detail how the
used anomaly data is created. Methodological considerations underlying cPAX
are detailed in section 4 including feature-wise visualization of anomalies (sec-
tion 4.1), visualization of time series data including visualization in latent spaces
(section 4.2), integration of a knowledge base to store previous anomalies as well
as the integration of a database of known anomaly cases and it’s application
in matching (section 4.3). A case study demonstrating the abilities of cPAX is
given in section 5.

2 Related Work

Visualization of Time Series Data Several papers present and compare ba-
sic methods to render univariate time-series, including line charts with or without
augmentations, box plots, and color fields [2, 10], which help form a decision on
how to plot the values of a single sensor. However, for high-dimensional data, it
does not suffice to look at only single variables at once, as anomalous behavior
can easily manifest in the interactions between multiple sensor measurements. In
some settings we can expect multiple features to follow similar patterns during
normal operation. In such a setting, [15] visualize multiple features as superim-
posed line charts, where they facilitate filtering the data. This can be seen as
the opposite of our setting, but we remark that such a filter could potentially
be used as an anomaly detector. [12] use stacked charts to visualize individual
features which they rank and scale according to their importance to a given task.
However, with the amount of sensors available for chemical plants this approach
would be too overwhelming in our context. In order to detect correlations with
latencies, lense-based systems like ChronoLenses [36] and KronoMiner [35] can
be used.

Latent Space Based Visualization In order to use several variables at once
in order to reveal relationships between time points in the bigger picture, a com-
mon approach is to make use of latent spaces, using low-dimensional projections
of high-dimensional data. Examples include methods utilizing Principal Com-
ponent Analysis (PCA) to find patterns in cyclic data regarding a variable [5].
This, however, would not admit integrating additional deviating data.
5 See appendix A for a detailed description.
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To analyze the development of a single multivariate time series, one can
employ Multi Dimensional Scaling (MDS) [7] and then analyze the shape of the
trace [3]. There are also approaches using a Self-Organizing Map (SOM) [22] as
base for the projection [16, 27]. Such an approach could be tested in a future
version in our program and evaluated against our current projection.

Several possibilities for augmenting projections exist. The renderings for each
single point in a projection can display the data vector in radial glyph [33], and
colored areas can represent clusters along with a representation of a typical
member in form of a line chart [29]. While we do not use such a technique in the
current version of our tool, this might become relevant in the future.

Anomaly Detection in Time Series Detecting anomalies in time-series
data is an active research field with numerous contributions in recent years [28,
32]. Especially high-dimensional chemical process data presents an attractive
opportunity [34, 19, 14, 30, 24, 25]. However, it is still not clear how different
methods should be evaluated and compared [32], and, thus, it is still an open
research question which methods are best suited for anomaly detection on time
series and especially chemical process data [13]. For this reason, we keep the
anomaly detector as an interchangeable component in our visualization tool.

3 Background – Anomaly detection in the Tennessee
Eastman Process

3.1 The Tennessee Eastman Process

Over the past three decades, the Tennessee Eastman process (TEP) has become
the standard benchmark for evaluating learning-based anomaly detection tech-
niques on chemical process data [13, 19]. TEP is based on an existing plant and
its operational processes, but the data itself is synthetic, derived from a simu-
lation of the plant. It consists of five main modules that are monitored by 52
sensors. The version of the TEP data used here is available online and is ref-
erenced in [19]. This dataset includes error-free data for algorithm training, as
well as 20 different types of erroneous data sets with their complete simulations.
Each of these 21 data sets has 500 runs, initialized with different random values.
Data points are sampled every three minutes over 25 hours for training data and
48 hours for test data, comprising 52 parameters.

Anomaly Detection Anomaly detection stands as a cornerstone challenge
in machine learning, driving substantial efforts towards the creation of more
resilient and effective models. The primary objective is to accurately character-
ize the normal operational patterns of a system, thereby identifying significant
deviations as anomalies. Contemporary approaches often leverage deep neural
networks, which excel in learning complex patterns from observational data.

This section investigates anomaly detection specifically within the context of
time-series data, a pivotal component within cPAX. Here, an integrated anomaly
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detector not only supports the control system but also generates insightful visu-
alizations to aid operators in interactive exploration.

Anomaly Detection On Time Series Given example data from normal
operating conditions x1

train, . . . ,x
n
train, various anomaly detectors can be trained,

as extensively reviewed in [28, 32]. These detectors yield a score function

s : (x(0), . . . ,x(t)) 7→ [0, 1]

that assesses time series data up to time t, typically within a finite horizon
(x(t−w), . . . ,x(t)) for some w ∈ N. Importantly, this function assigns a score to
each time step, where higher scores indicate a higher likelihood of an anomaly.
Detailed evaluations of anomaly detectors for the TEP are provided in [13].

Sensor-based Anomaly Scores Our objective is to assist operators in pin-
pointing the cause of anomalies, necessitating detailed information on which
sensors are implicated. Specifically, we require anomaly scores for each sensor
variable, distinct from the system-wide scores used thus far. If an anomaly detec-
tor already provides variable-wise scores, all necessary information is inherently
available, transforming them to system-wide scores is straightforward. Other-
wise, methods are needed to allocate anomaly scores to individual features,
quantifying their contributions to the overall anomaly score. Techniques such
as Layer-Wise Relevance Propagation (LRP) [4] exemplify advancements in Ex-
plainable Artificial Intelligence, where scores generated by neural networks are
back-propagated and normalized across network layers.

4 Methods

Existing anomaly detectors inform operators when plant data deviates from
normal and identify sensors possibly responsible for anomalies. Managing this
extensive information from numerous sensors is daunting. To address this, we
introduce cPAX (cf. fig. 1), a system that provides concise and intuitive online
visualization of plant data. Significantly, cPAX integrates anomaly detection
methods to visually represent the plant’s current state, enabling comparisons
with known anomalous scenarios for enhanced monitoring and analysis.

System Overview cPAX consists of 7 major components (A–G) as anno-
tated in fig. 1. (A) contains the user control paraments. (B) shows a schematic
representation of the plant with all components (white shapes) and sensors (col-
ored circles). (C) is a time slider including anomaly scores in color. (D) provides
detailed information for a selected sensor. (E) is an annotated non-linear projec-
tion of the multivariate sensor data. (F) supports comparative analysis between
new anomalies and the ones from the knowledge base. (G) gives an overview of
relevant elements in the knowledge base.
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4.1 Schematic Plant representation

To offer operators a familiar data perspective, we present a process flow dia-
gram depicted in component (B) of fig. 1. This diagram provides a high-level
abstraction of the plant, where each of the 52 sensors is symbolized by a spheri-
cal glyph conveying anomaly status information. Component (C) features a time
slider illustrating the temporal evolution of the plant simulation and displaying
system-wide anomaly scores over time using a color spectrum. It also allows
operators to adjust the observed time period for detailed analysis.

Anomaly Scores As Features Operators can easily lose focus due to divided
attention, distractions, or fatigue from extended work hours. Therefore, it is cru-
cial to streamline the information presented and avoid overwhelming operators
with excessive detail. Additionally, we advocate for an intuitive visualization
method to pinpoint anomalies using the plant’s schematic. The concept involves
color-coding each sensor based on its anomaly score as provided by the anomaly
detector.

We depict these scores on a schematic of the chemical plant, illustrated in
fig. 2. On the left side, where no anomaly is detected, all sensors appear in dark
blue, blending discreetly with the black background. Conversely, on the right
side of the figure, during an anomaly occurrence, sensors indicating the anomaly
are highlighted in bright red to emphasize critical areas. This design facilitates
rapid and efficient monitoring with a straightforward visual inspection.

Fig. 2. The process flow diagram at two different points in time. The current variable-
wise anomaly scores are shown (inner circles), as well as their maxima in the selected
interval (outer rings). The left side shows a normal operating plant, the right side one
that went anomalous in several parts of the system.

An anomaly might occur fleetingly, potentially unnoticed by the user if they
are not actively monitoring the display. To ensure this critical information is
captured, each sensor is depicted using a glyph featuring an inner circle and an
outer ring. The inner circle’s color represents the current anomaly score, while
the outer ring displays the maximum score observed for that sensor over a user-
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defined time interval. This ensures that potentially important information is
retained.

4.2 Visualizing Sensor Data

A chemical plant can be equipped with a variety of sensors, including tempera-
ture, pressure, flow, mixture composition and level sensors. Each of these sensors
can be sampled at a predefined fixed frequency during the operation of the plant
allowing for continuous oversight. Let x = (x1, . . . , xk), xi ∈ R, 1 ≤ i ≤ k be a
k-dimensional (kD) real-valued observation and let T = {x(t)}, 1 ≤ t ≤ N be
a time series with N kD observations. The raw sensor data is thus represented
as a multivariate time-series x(t) ∈ Rk, where each feature xi corresponds to a
single sensor.

Augmented Time Series View (fig. 1(D)) Component (D) displays the
raw data from an individual sensor, crucial for detailed and trustworthy analysis
in a time series view. The sensor that is displayed can be interactively selected
by the operator by clicking on a glyph in the process diagram (B), in the time
range chosen in component (C).

A larger depiction of the view is shown in Figure 3, featuring examples of
both normal operating conditions (top) and anomaly conditions (bottom).

Fig. 3. Two instances of the variable view, depicting raw sensor data in different vari-
ables. The top view shows a normal development, while the bottom one is abnormal.
We see this by the line leaving the blue area, which marks the range of the normal op-
erating conditions, as well as the line color, which encodes the anomaly score, changing
to red.
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The raw sensor data is depicted as a colored line where color encodes the
anomaly score. The color legend is given in component (B) and is persistent
throughout cPAX. The knowledge base of cPAX can store information on normal
operation conditions for a sensor. These are depicted as a blue range in the time
series plot. Additional statistical quantities are depicted by dashed red lines
(mean and mean ± three standard deviations) as well as a white line for the
trend (using exponential smoothing).

In cases where an anomaly is caused by failure of a single system, the aug-
mented time series view already clearly depicts relevant information to identify
the cause of an anomaly. In chemical plants this may occur in case of pipe clog-
ging, pump or sensor failure.

Two-Dimensional Projections (fig. 1(E)) Often, anomalies stem from
small deviations across multiple sensors, making them challenging to repre-
sent effectively with line charts alone. To aid in exploring the high-dimensional
multivariate sensor space, we introduce component (E), which visualizes a two-
dimensional projection of the k-dimensional signal.

A projection P is a function

P : Rk → Rq (1)

where q ≪ k and typically q = 2. If the target dimension q equals two the
projected data can be represented as a scatter plot and a time series can be
represented as a trajectory connecting subsequent points (xt,xt+1), 1 ≤ t < N .

Dimensionality reduction is a well-explored field with numerous techniques
tailored to different data types and quality criteria [9]. In their comprehensive
survey, Espadoto et al. [9] quantitatively compare 44 projection methods, high-
lighting their efficacy across various datasets. Among datasets similar to ours,
such as secom and seismic, focusing respectively on manufacturing failure detec-
tion and seismic activity, a range of techniques including PCA, MDS, IDMAP,
and LAMP demonstrate effective projection qualities. In their global analysis
across diverse data sets, they found that best results are in general obtained by
MDS, IDMAP, PBC, t-SNE and UMAP.

Espadoto et al. find that multidimensional scaling (MDS) [7] consistently
performs well across diverse datasets, including those most akin to ours. There-
fore, MDS has been chosen as the primary projection method for cPAX due to
its robust performance. Notably, the projection technique is interchangeable and
can be easily substituted with another method or switched interactively via the
user control panel (cf. fig. 1).

MDS begins by constructing a distance matrix that quantifies pairwise dis-
similarities among all items in the dataset. It then employs an iterative opti-
mization algorithm to position each item in a lower-dimensional space, aiming
to preserve the original dissimilarities as closely as possible.

For streaming data, we adapt the standard algorithm by integrating each
new data point into the embedded space using a heuristic based on the trajec-
tory defined by the last two points. This initialization method sets coordinates
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for subsequent runs. Real-world data typically shows minimal deviation between
consecutive points, ensuring rapid stabilization and efficient projection with min-
imal iterations thereafter.

Fig. 4. The high-dimensional data points are projected into a two dimensional latent
space using Multi-Dimensional Scaling. A white trace and outlines highlight the ongo-
ing process, grey ones selected known fault cases. The colors of the nodes indicate the
anomaly score, with red being high, blue being low.

In fig. 4, we observe the projection results of the ongoing process (white
traced lines of nodes), a series under normal operating conditions (large blue
bulb), and time series data from various known fault cases (grey traces) onto a
two-dimensional plane.

The projection technique endeavors to preserve distances as accurately as
possible in its two-dimensional embedding, facilitating intuitive interpretation
for users based on normalized values. Traces are utilized as enhancements to
emphasize specific time-series aspects.

4.3 Integrating A Database Of Known Anomalies

Investigating and resolving the cause of an anomaly is a challenging task that
typically demands a profound understanding of the underlying processes and
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substantial technical expertise. Previous instances of anomalies and their reso-
lutions can offer invaluable insights to guide the mitigation of new anomalies.

In this section, we introduce a database dedicated to cataloging known anoma-
lies and discuss methods for ranking these examples based on their similarity to
a new anomaly.

A Database Of Examples During chemical plant operations, anomalies,
while infrequent, are inevitable, and they often exhibit commonalities across dif-
ferent processes [20]. When anomalies occur, valuable metadata can be gathered,
encompassing detailed insights into their causes, effects, such as the location of
faults, affected components, mitigation strategies, and subsequent impacts on
plant behavior. Additionally, data regarding the operators present during the
anomaly and their responses provide crucial information for resolving similar
situations.

All this information is systematically collected in a database alongside the
raw sensor data for comprehensive analysis and reference.

Matching Multivariate Time-Series In fig. 4, we observed the projection
results where data points representing normal operating conditions form a large
blue bulb. This serves as a vital reference for what constitutes normal behavior.
In contrast, fault cases are expected to exhibit distinct patterns from both normal
conditions and other fault cases. Initially starting within the normal bulb, fault
time-series gradually diverge outward, forming what we refer to as tendrils.

Armed with this understanding, users can visually compare the ongoing pro-
cess to known faults. A normal process should remain within the bulb of normal
operating conditions, whereas an abnormal run will begin to develop a tendril
similar to known fault cases. When the ongoing process closely resembles a known
fault, their traces are expected to exhibit proximity to each other.

Component (G) visualizes the database of known fault cases. Each known
fault case is represented by a color-coded score indicating its similarity to the
ongoing process, with the score derived from an inverted distance measure.

Currently, we utilize a modified version of Subsequence Dynamic Time Warp-
ing (SUBDTW) [26] as our distance measure. Our method involves extracting
windowed subsequences from known fault time series and comparing them with
the ongoing series, excluding points where the time series behave normally. The
program offers several variations of this algorithm for flexibility.

One limitation of any projection method is the potential loss of information,
which can lead to distortions. To directly assess the actual distances based on
our point metric, in the matrix view (F), we visualize a submatrix of the point
distance matrix Dij . This submatrix is restricted to column indices representing
the ongoing run and row indices corresponding to a specific known fault case,
presented in the form of a color field. In fig. 5, we illustrate visualizations for
two distinct known fault cases.
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Fig. 5. The distance matrices between the ongoing process and two known fault cases.
The x-axis denotes the point in time in the ongoing process, the y-axis that of the
time series of the known fault. The color palette is the commonly used plasma palette,
ranging from yellow (close) over red to dark violet (far). The opacity of the color is set
to the product of the two system-wide anomaly scores at the points in time. Thus the
uninteresting normal data points fade into black. The trace shows the optimal warping
path found by the windowed SUBDTW algorithm. On the left side, we see a good
match, on the right side a bad one.

5 Case Study

Applying cPAX to the TEP Benchmark We demonstrate the functional-
ity of cPAX using the TEP benchmark, highlighting its interactive capabilities.
Detailed images corresponding to this section can be found in appendix B.

We compiled a small database of known fault cases based on the first three
instances in the TEP training data. For each case, we extracted the critical
segment of the time-series around the introduction of the fault into the system.
Subsequently, the first case from the testing data was chosen as the ongoing
scenario.

We begin monitoring the system. Up to eight hours into the scenario, the
case still exhibits normal behavior. The process flow diagram (B) and the time
view (C) are predominantly displayed in inconspicuous dark blue, occasionally
interrupted by lighter blues due to noise triggering the anomaly detector.

Fault Analysis Around 8:09 (fig. 8), we observe a slightly elevated anomaly
score at the stripper pressure sensor. To analyze see the actual values, we click
on the node. In the variable view (D) we see that the pressure exceeded the
boundaries of the normal operating conditions.

By 8:12 (fig. 9), the variable view shows us that the stripper pressure has
deviated more than three standard deviations from the mean of normal operating
conditions. The corresponding sensor glyph has now turned into an alarming
bright red. We also observe anomalies in the reactor and separator pressures,
albeit to a lesser extent. Ideally, we can now match the run to a known fault case
in the database. We take a look at the database view (G) to see which historical
time series are closest to the ongoing run. In the projection view (E), we see
that the ongoing scenario clearly departs from the normal operating condition
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bulb, with the latest time point positioned between the first two fault cases. We
do not have enough information to be sure about a particular match, though.

By 8:15, and more distinctly at 8:21 (fig. 10), we observe the trajectory of the
ongoing case deviating from the second fault case and aligning closely with the
first. To confirm this first impression, we engage in further analysis. We select
the first two cases by clicking on them in the database view, resulting in the data
point nodes of these in the projection view being highlighted by grey traces. This
also creates plots in the matrix view (F), in which we see a ridge for the first
case, indicating a good match, but a bad one for the second case.

We also want to compare the state of the plant in the current time point
to that in the closest time points in the known cases. For that, we select the
corresponding node in the projection view. Dashed lines now indicate the closest
points in the selected cases to this point. We select one of these for comparison.
This changes our visualizations in two ways:

Firstly, the glyphs in the process flow diagram (B) are extended by a small
circle in the top right corner, as illustrated in fig. 6. This circle displays the
anomaly score of the known fault case at the selected time point, facilitating
comparison of anomaly distribution. Additionally, mismatches are highlighted by
encircling the sensor in question in red. Secondly, the variable view (D) updates

Fig. 6. An updated glyph in the geometric plant view. The small circle in the upper
right corner shows the anomaly score of the known fault case time point, and the sensor
is encircled in red to indicate the mismatch.

to include the values of the known case displayed as a grey curve, along with
it’s trend. For straightforward comparison, the curves are aligned at the selected
time points. Examples of both are illustrated in fig. 9.

Using these visualizations, we can clearly identify deviations in several sensors
between the ongoing scenario and the second case. In the first case, only one
sensor exhibits a significant deviation, and closer examination in the variable
view suggests this is likely due to latency.

Additional Insights In a real operational scenario, immediate action is crucial
once a fault is identified. In our case, we have identified the first known fault
case as a match and can retrieve it’s detailed description, informing us that this
is a disturbance regarding reactant ratios in one specific inlet. This knowledge is
pivotal as it directs attention to a specific area for investigation and intervention.
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It’s noteworthy that the sensor measuring the flow rate at the inlet in question
shows normal values. Even with close monitoring of this variable, any anoma-
lies in the reactant composition remain undetectable since that sensor does not
directly measure the ratio, which is a hidden variable. This underscores the
complexity of process monitoring, where domain expertise plays a decisive role.

A domain expert proficient in chemical processes gets a hint of the underlying
issue from the observed surge in one reactant within the purge, which deviated
from normal bounds around 8:21. However, the other relevant reactant shows
normal values in the purge at this point in time, and the expert might require
additional time to understand what is wrong.

Fault Documentation We now assume that the historical data would not be
present, and thus no intervention did occur. Instead, we wait for more data that
gives a better understanding of the situation.

At 8:30 (fig. 11), the process flow diagram (B) shows strong anomalies in
the sensors regarding the two reactants both in the purge and in the reactor
intake. This information equips a domain expert with a solid understanding of
the problem, facilitating precise intervention strategies.

Furthermore, the ability to document the issue comprehensively and trans-
form the ongoing case into a documented fault case for future reference under-
scores the value of integrated anomaly detection systems. This proactive ap-
proach not only aids in immediate resolution but also enriches the repository of
known fault cases, enhancing the plant’s operational resilience.

Such integrated systems exemplify the evolving landscape of anomaly detec-
tion in chemical processes, where advancements continue to refine our ability to
detect, analyze, and mitigate operational disruptions effectively.

6 Discussion

In this paper, we introduce cPAX, a comprehensive tool designed for real-time
monitoring of chemical plants. We critically evaluate various visualization meth-
ods in their effectiveness for depicting anomalous behavior and conclude that re-
lying solely on univariate visualizations is insufficient. Consequently, we explore
dimensionality reduction techniques to enhance anomaly detection capabilities.

Additionally, we incorporate a database of known anomalies into our tool
and propose methods to integrate these examples into visualizations. This en-
hancement equips operators with crucial information about similar historical
anomalies, thereby facilitating more informed resolution strategies.

Our development process involves close collaboration with operators of con-
tinuous distillation mini-plants and laboratory-sized batch-distillation plants,
alongside machine learning experts. This collaborative effort ensures that our
tool delivers an optimal user experience tailored to operational needs.

We leverage substantial datasets from these processing plants, including sev-
eral induced anomalies, to establish a robust database of examples and rigorously
test our tool in real-world applications.
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Our tool features an interchangeable anomaly detector, enabling its adap-
tation to diverse applications and facilitating integration with advancements in
anomaly detection techniques.

7 Future Work

The current data point metrics used by cPAX work on the data values alone
and might not provide enough separation of seemingly similar data points that
differ regarding non-trivial anomalies. Effectively integrating modern anomaly
detection methods into the projection to maintain a better metric is an upcoming
challenge. This could involve appending the variable-wise anomaly scores to the
vector of the raw data values, in order to separate data points also by occurrence
of non-trivial anomalies. Balancing the metric’s abstraction is crucial to ensure
operator interpretability, as overly abstract metrics may hinder effective tool
utilization.

Testing both the metrics and anomaly detectors rigorously on real application
data is imperative across all tool components, particularly in dimensionality
reduction and root cause analysis.

Looking ahead, the experience collected over applying the tool on different
plants promises insights that can then be reused to broaden overall efficiency.
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References

1. Adeli, M., Mazinan, A.: High efficiency fault-detection and fault-tolerant control
approach in tennessee eastman process via fuzzy-based neural network represen-
tation. Complex & Intelligent Systems 6 (02 2019). https://doi.org/10.1007/
s40747-019-0094-3

2. Albers, D., Correll, M., Gleicher, M.: Task-driven evaluation of aggregation in time
series visualization. In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. pp. 551–560. Association for Computing Machinery (2014).
https://doi.org/10.1145/2556288.2557200

3. Bach, B., Shi, C., Heulot, N., Madhyastha, T., Grabowski, T., Dragicevic, P.:
Time curves: Folding time to visualize patterns of temporal evolution in data.
IEEE Transactions on Visualization and Computer Graphics 22, 559–568 (1 2016).
https://doi.org/10.1109/TVCG.2015.2467851

4. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On
Pixel-Wise explanations for Non-Linear classifier decisions by Layer-Wise relevance
propagation. PLoS One 10(7), e0130140 (Jul 2015)

5. Bernard, J., Wilhelm, N., Scherer, M., May, T., Schreck, T.: Timeseriespaths:
Projection-based explorative analysis of multivariate time series data. In: Inter-
national Conference in Central Europe on Computer Graphics and Visualization
(2012)

https://doi.org/10.1007/s40747-019-0094-3
https://doi.org/10.1007/s40747-019-0094-3
https://doi.org/10.1007/s40747-019-0094-3
https://doi.org/10.1007/s40747-019-0094-3
https://doi.org/10.1145/2556288.2557200
https://doi.org/10.1145/2556288.2557200
https://doi.org/10.1109/TVCG.2015.2467851
https://doi.org/10.1109/TVCG.2015.2467851


cPAX: Comparative Visualization Of Anomalies 15

6. Christofides, P.D., Davis, J.F., El-Farra, N.H., Clark, D., Harris, K.R.D., Gip-
son, J.N.: Smart plant operations: Vision, progress and challenges. AIChE Jour-
nal 53(11), 2734–2741 (2007). https://doi.org/https://doi.org/10.1002/aic.
11320

7. Cox, M.A.A., Cox, T.F.: Multidimensional Scaling, pp. 315–347. Springer
Berlin Heidelberg, Berlin, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-33037-0_14

8. E., B.: The bhopal disaster and its aftermath: A review. Environmental Health
4(6), 1–6 (2005). https://doi.org/https://doi.org/10.1186/1476-069X-4-6

9. Espadoto, M., Martins, R.M., Kerren, A., Hirata, N.S.T., Telea, A.C.: Toward
a quantitative survey of dimension reduction techniques. IEEE Transactions on
Visualization and Computer Graphics 27(3), 2153–2173 (Mar 2021). https://
doi.org/10.1109/tvcg.2019.2944182

10. Gogolou, A., Tsandilas, T., Palpanas, T., Bezerianos, A.: Comparing similarity
perception in time series visualizations. IEEE Transactions on Visualization and
Computer Graphics 25, 523–533 (1 2019). https://doi.org/10.1109/TVCG.2018.
2865077

11. Hajihosseini, P., Salahshoor, K., Moshiri, B.: Process fault isolation based on trans-
fer entropy algorithm. ISA Transactions 53, 230–240 (2014). https://doi.org/10.
1016/j.isatra.2013.11.007

12. Hao, M.C., Dayal, U., Keim, D.A., Schreck, T.: Importance-driven visualization
layouts for large time series data. Proceedings - IEEE Symposium on Information
Visualization, INFO VIS pp. 203–210 (2005). https://doi.org/10.1109/INFVIS.
2005.1532148

13. Hartung, F., Franks, B.J., Michels, T., Wagner, D., Liznerski, P., Reithermann, S.,
Fellenz, S., Jirasek, F., Rudolph, M., Neider, D., Leitte, H., Song, C., Kloepper,
B., Mandt, S., Bortz, M., Burger, J., Hasse, H., Kloft, M.: Deep anomaly detection
on tennessee eastman process data. Chemie Ingenieur Technik 95(7), 1077–1082
(2023). https://doi.org/https://doi.org/10.1002/cite.202200238

14. Heo, S., Lee, J.H.: Statistical process monitoring of the tennessee eastman process
using parallel autoassociative neural networks and a large dataset. Processes 7 (7
2019). https://doi.org/10.3390/pr7070411

15. Hochheiser, H., Shneiderman, B.: Dynamic query tools for time series data sets:
Timebox widgets for interactive exploration. Information Visualization 3, 1–18
(2004). https://doi.org/10.1057/palgrave.ivs.9500061

16. Hu, Y., Wu, S., Xia, S., Fu, J., Chen, W.: Motion track: Visualizing variations of
human motion data. In: 2010 IEEE Pacific Visualization Symposium (PacificVis).
pp. 153–160 (2010). https://doi.org/10.1109/PACIFICVIS.2010.5429596

17. Ji, C., Ma, F., Wang, J., Wang, J., Sun, W.: Real-time industrial process fault
diagnosis based on time delayed mutual information analysis. Processes 9 (6 2021).
https://doi.org/10.3390/pr9061027

18. Katser, I.: https://github.com/YKatser/CPDE, accessed May 22, 2024
19. Katser, I., Kozitsin, V., Lobachev, V., Maksimov, I.: Unsupervised offline change-

point detection ensembles. Applied Sciences (Switzerland) 11 (5 2021). https:
//doi.org/10.3390/app11094280

20. Kister, H.: What caused tower malfunctions in the last 50 years? Chemical
Engineering Research and Design 81(1), 5–26 (2003). https://doi.org/https:
//doi.org/10.1205/026387603321158159, international Conference on Distilla-
tion and Absorption

https://doi.org/https://doi.org/10.1002/aic.11320
https://doi.org/https://doi.org/10.1002/aic.11320
https://doi.org/https://doi.org/10.1002/aic.11320
https://doi.org/https://doi.org/10.1002/aic.11320
https://doi.org/10.1007/978-3-540-33037-0_14
https://doi.org/10.1007/978-3-540-33037-0_14
https://doi.org/10.1007/978-3-540-33037-0_14
https://doi.org/10.1007/978-3-540-33037-0_14
https://doi.org/https://doi.org/10.1186/1476-069X-4-6
https://doi.org/https://doi.org/10.1186/1476-069X-4-6
https://doi.org/10.1109/tvcg.2019.2944182
https://doi.org/10.1109/tvcg.2019.2944182
https://doi.org/10.1109/tvcg.2019.2944182
https://doi.org/10.1109/tvcg.2019.2944182
https://doi.org/10.1109/TVCG.2018.2865077
https://doi.org/10.1109/TVCG.2018.2865077
https://doi.org/10.1109/TVCG.2018.2865077
https://doi.org/10.1109/TVCG.2018.2865077
https://doi.org/10.1016/j.isatra.2013.11.007
https://doi.org/10.1016/j.isatra.2013.11.007
https://doi.org/10.1016/j.isatra.2013.11.007
https://doi.org/10.1016/j.isatra.2013.11.007
https://doi.org/10.1109/INFVIS.2005.1532148
https://doi.org/10.1109/INFVIS.2005.1532148
https://doi.org/10.1109/INFVIS.2005.1532148
https://doi.org/10.1109/INFVIS.2005.1532148
https://doi.org/https://doi.org/10.1002/cite.202200238
https://doi.org/https://doi.org/10.1002/cite.202200238
https://doi.org/10.3390/pr7070411
https://doi.org/10.3390/pr7070411
https://doi.org/10.1057/palgrave.ivs.9500061
https://doi.org/10.1057/palgrave.ivs.9500061
https://doi.org/10.1109/PACIFICVIS.2010.5429596
https://doi.org/10.1109/PACIFICVIS.2010.5429596
https://doi.org/10.3390/pr9061027
https://doi.org/10.3390/pr9061027
https://github.com/YKatser/CPDE
https://doi.org/10.3390/app11094280
https://doi.org/10.3390/app11094280
https://doi.org/10.3390/app11094280
https://doi.org/10.3390/app11094280
https://doi.org/https://doi.org/10.1205/026387603321158159
https://doi.org/https://doi.org/10.1205/026387603321158159
https://doi.org/https://doi.org/10.1205/026387603321158159
https://doi.org/https://doi.org/10.1205/026387603321158159


16 Daniel Reinhardt et al.

21. Kleindorfer, P.R., Belke, J.C., Elliott, M.R., Lee, K., Lowe, R.A., Feldman, H.I.:
Accident epidemiology and the u.s. chemical industry: Accident history and worst-
case data from rmp*info. Risk Analysis 23(5), 865–881 (2003). https://doi.org/
https://doi.org/10.1111/1539-6924.00365

22. Kohonen, T.: Self-organized formation of topologically correct feature maps.
Biological Cybernetics 43(1), 59–69 (Jan 1982). https://doi.org/10.1007/
BF00337288

23. Kourniotis, S., Kiranoudis, C., Markatos, N.: Statistical analysis of domino chem-
ical accidents. Journal of Hazardous Materials 71(1), 239–252 (2000). https:
//doi.org/https://doi.org/10.1016/S0304-3894(99)00081-3

24. Li, H., Xiao, D.Y.: Fault diagnosis of tennessee eastman process using signal ge-
ometry matching technique. EURASIP Journal on Advances in Signal Processing
2011, 1–19 (2011)

25. Lohfink, A.P., Anton, S.D., Schotten, H.D., Leitte, H., Garth, C.: Security in pro-
cess: Visually supported triage analysis in industrial process data. IEEE Trans-
actions on Visualization and Computer Graphics 26, 1638–1649 (4 2020). https:
//doi.org/10.1109/TVCG.2020.2969007

26. Müller, M.: Dynamic Time Warping, pp. 69–84. Springer Berlin Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74048-3

27. Sakamoto, Y., Kuriyama, S., Kaneko, T.: Motion map: Image-based retrieval and
segmentation of motion data. In: Symposium on Computer Animation (2004)

28. Schmidl, S., Wenig, P., Papenbrock, T.: Anomaly detection in time series: a com-
prehensive evaluation. Proceedings of the VLDB Endowment 15(9), 1779–1797
(2022)

29. Steiger, M., Bernard, J., Mittelstädt, S., Lücke-Tieke, H., Keim, D., May, T.,
Kohlhammer, J.: Visual analysis of time-series similarities for anomaly detection
in sensor networks. Computer Graphics Forum 33(3), 401–410 (2014). https:
//doi.org/https://doi.org/10.1111/cgf.12396

30. Sun, W., Paiva, A.R.C., Xu, P., Sundaram, A., Braatz, R.D.: Fault detection and
identification using bayesian recurrent neural networks. Comput. Chem. Eng. 141
(11 2019). https://doi.org/10.1016/j.compchemeng.2020.106991

31. Vílchez, J.A., Sevilla, S., Montiel, H., Casal, J.: Historical analysis of accidents in
chemical plants and in the transportation of hazardous materials. Journal of Loss
Prevention in the Process Industries 8(2), 87–96 (1995). https://doi.org/https:
//doi.org/10.1016/0950-4230(95)00006-M

32. Wagner, D., Michels, T., Schulz, F.C., Nair, A., Rudolph, M., Kloft, M.: Timesead:
Benchmarking deep multivariate time-series anomaly detection. Transactions on
Machine Learning Research (2023)

33. Ward, M.O., Guo, Z.: Visual Exploration of Time-Series Data with Shape Space
Projections. Computer Graphics Forum (2011). https://doi.org/10.1111/j.
1467-8659.2011.01919.x

34. Yin, S., Ding, S.X., Haghani, A., Hao, H., Zhang, P.: A comparison study of basic
data-driven fault diagnosis and process monitoring methods on the benchmark
tennessee eastman process. Journal of Process Control 22, 1567–1581 (10 2012).
https://doi.org/10.1016/j.jprocont.2012.06.009

35. Zhao, J., Chevalier, F., Balakrishnan, R.: Kronominer: Using multi-foci navigation
for the visual exploration of time-series data. Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems (2011)

36. Zhao, J., Chevalier, F., Pietriga, E., Balakrishnan, R.: Exploratory analysis of
time-series with chronolenses. IEEE Transactions on Visualization and Computer
Graphics 17, 2422–2431 (2011). https://doi.org/10.1109/TVCG.2011.195

https://doi.org/https://doi.org/10.1111/1539-6924.00365
https://doi.org/https://doi.org/10.1111/1539-6924.00365
https://doi.org/https://doi.org/10.1111/1539-6924.00365
https://doi.org/https://doi.org/10.1111/1539-6924.00365
https://doi.org/10.1007/BF00337288
https://doi.org/10.1007/BF00337288
https://doi.org/10.1007/BF00337288
https://doi.org/10.1007/BF00337288
https://doi.org/https://doi.org/10.1016/S0304-3894(99)00081-3
https://doi.org/https://doi.org/10.1016/S0304-3894(99)00081-3
https://doi.org/https://doi.org/10.1016/S0304-3894(99)00081-3
https://doi.org/https://doi.org/10.1016/S0304-3894(99)00081-3
https://doi.org/10.1109/TVCG.2020.2969007
https://doi.org/10.1109/TVCG.2020.2969007
https://doi.org/10.1109/TVCG.2020.2969007
https://doi.org/10.1109/TVCG.2020.2969007
https://doi.org/10.1007/978-3-540-74048-3
https://doi.org/10.1007/978-3-540-74048-3
https://doi.org/https://doi.org/10.1111/cgf.12396
https://doi.org/https://doi.org/10.1111/cgf.12396
https://doi.org/https://doi.org/10.1111/cgf.12396
https://doi.org/https://doi.org/10.1111/cgf.12396
https://doi.org/10.1016/j.compchemeng.2020.106991
https://doi.org/10.1016/j.compchemeng.2020.106991
https://doi.org/https://doi.org/10.1016/0950-4230(95)00006-M
https://doi.org/https://doi.org/10.1016/0950-4230(95)00006-M
https://doi.org/https://doi.org/10.1016/0950-4230(95)00006-M
https://doi.org/https://doi.org/10.1016/0950-4230(95)00006-M
https://doi.org/10.1111/j.1467-8659.2011.01919.x
https://doi.org/10.1111/j.1467-8659.2011.01919.x
https://doi.org/10.1111/j.1467-8659.2011.01919.x
https://doi.org/10.1111/j.1467-8659.2011.01919.x
https://doi.org/10.1016/j.jprocont.2012.06.009
https://doi.org/10.1016/j.jprocont.2012.06.009
https://doi.org/10.1109/TVCG.2011.195
https://doi.org/10.1109/TVCG.2011.195


Appendix

A The Tennessee Eastman Process Benchmark

In order to develop, test and present tools and visualizations for control systems
in chemical plants, data of such a plant is required. Authentic data can be hard
to come by, as companies are reluctant to share such sensitive information. This
is where the Tennessee Eastman Process (TEP) benchmark data comes into
play.

The TEP is a simulation of a chemical plant which imitates an actual plant
owned by the Eastman Chemical Company. A sketch of the plant is seen in fig. 7.

Reactants named A, C, D and E in liquid and gaseous form as well as an
inert E are piped in a reactor in order to produce products G and H, as well as
the undesired byproduct F. The plant also features units which separate liquids
and gasses, and a stripper that extracts the desired product from the stream.
The remainder of this is recycled. A purge is used to maintain the balance.

Fig. 7. Sketch of the TEP plant. The sensors are depicted by their number, with passive
measured variables being squares and controlled variables being circles. Continuous
lines are chemical flows, dashed lines control flows. Picture taken from Adeli et al [1].

The simulation contains data from 52 sensors, of which 41 represent what in
a real process would be passive measurements, and the remaining 11 being con-
trolled variables like valves. The system features automatic controls, the output
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of several of the measured variables being used to steer some of the controlled
variables. These simulated sensors represent what we would be able to perceive
in a real control process, but they are not all variables that the actual simulation
uses. For example, the ratio of reactants A and C in the fourth inlet is a hidden
variable.

The TEP data comes in one set of training data and one set of testing data,
which each consist of a case 0 with the normal operating conditions (NOC) and
further 21 other cases, each representing a fault. In both training and testing
data, the faults use the same numbers. As such, one can use the training data
in order to perform supervised learning.

For most of the faults, an explanation is already provided, that is which
variables of the simulation were made to behave out of order. For example, the
first fault is an unusual ratio of reactants A and C in the fourth inlet, the hidden
variable we previously talked about. While a supervised algorithm might simply
associate each fault this with a pattern, it requires a human expert to create an
explanation. Some fault cases, are without description, namely cases 16 and 21.

The TEP data as well as the Fortran routines can be found in [18], the
repository tied to the paper by Katser et al [19].

More detailed descriptions of the TEP can be found in [11, 1, 17].
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B Case Study Pictures

Fig. 8. The case study at 8:09. The light pink color of the stripper pressure node in
the process flow diagram gives us an early hint of an anomaly.

Fig. 9. The case study at 8:12. The views now clearly indicate an anomaly, affecting
mostly the pressure of the stripper for now.
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Fig. 10. The case study at 8:21, a time point in the second known fault case selected
in the upper picture, one in the first case in the lower. In the process flow diagram, we
see several mismatches for the former, but only one in the latter. For that, the variable
view reveals that this is due to a latency. Both projection view and matrix view also
indicate that the first case is the better match.
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Fig. 11. The case study at 8:30. The flow diagram reveals anomalies of two reactants
in the reactor inlet and purge, with which a domain expert could explain the fault even
without the match.
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