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Abstract. Accurate prediction of chemical phenomena is crucial for op-
timizing and understanding chemical processes. Physics-Informed Neural
Networks (PINNs) have emerged as a promising data-driven method for
predicting chemical phenomena using deep learning. However, PINNs,
which are based on multilayer perceptrons (MLPs), employ point-wise
predictions, overlooking the implicit dependencies within the physical
system. Sophisticated architectures, such as Transformers, can model
these complex dependencies, but they traditionally lack the integration
of physical constraints essential for accurate predictions. To address this,
we present Physics-Informed Transformers (PITs), a novel approach that
combines the strengths of Transformers with the incorporation of physi-
cal constraints through Partial Differential Equations (PDEs). PITs gen-
erate task-specific input sets for the chemical data that allow for incor-
porating the dependencies inherent in the physical system while also
incorporating physical constraints and replacing point-wise PINN loss
with a set-wise loss. Our experiments demonstrate that PITs achieve su-
perior generalization and accuracy in predicting activity coefficients and
agglomerate breakage, mitigating failure modes, and converging faster
compared to existing state-of-the-art approaches.

Keywords: Chemical Engineering · Physics Informed Neural Networks
· Transformers

1 Introduction

Accurate prediction of chemical phenomena such as particle aggregation [7] and
activity coefficients [17, 34] is crucial for understanding and optimizing chemical
processes, impacting fields such as chemical engineering, pharmaceuticals, and
environmental science [10, 19]. For instance, predicting activity coefficients is es-
sential for the design and operation of separation processes [26] and for describing
the properties of aqueous solution droplets relevant to atmospheric science [29].
Additionally, particle aggregation (coagulation/flocculation) is widely used in
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various industries, including papermaking, mineral processing, and wastewater
treatment [14].

For accurately predicting chemical phenomena, data-driven models are often
preferred over simulations as data-driven models can more accurately represent
chemical processes by incorporating external factors that influence predictions,
unlike simulations, which are purely mathematical models [9, 10]. Therefore,
having experimental data is advantageous for these models. However, obtain-
ing experimental data is typically expensive and limited in availability, posing a
challenge to the accurate prediction of chemical phenomena. For instance, even
extensive chemical property databases like the Dortmund Datenbank (DDB) [2]
have experimental data for the activity coefficients of only 31,000 binary systems,
representing a small fraction of all possible molecular combinations [42].

Physics-Informed Neural Networks (PINNs) represent a novel approach for
predicting chemical phenomena by combining data-driven methods with phys-
ical laws [31]. PINNs integrate the governing equations of chemical processes,
such as PDEs, directly into the training process of neural networks. This inte-
gration ensures that the predictions not only fit the experimental data but also
adhere to known physical laws, providing more reliable and interpretable results.
The primary benefit of using PINNs is their ability to generalize well from lim-
ited experimental data, leveraging the underlying physics (from PDEs) to make
accurate predictions even in data-scarce scenarios. This makes PINNs particu-
larly useful for applications where obtaining experimental data is challenging or
expensive [11].

Despite their advantages, current implementations of PINNs face several lim-
itations. One major challenge is the computational cost associated with training
these networks, as they require solving complex PDEs repeatedly during the
learning process [18]. Additionally, the accuracy of PINNs heavily depends on
the quality and completeness of the physical models they incorporate; inaccura-
cies or simplifications in these models can lead to erroneous predictions [46]. Fur-
thermore, PINNs may struggle with highly nonlinear or chaotic systems where
small errors in the physical model or data can propagate and amplify, reducing
the reliability of predictions [4]. Addressing these limitations is crucial to en-
hance the efficiency, robustness, and applicability of PINNs in diverse chemical
engineering contexts.

Existing PINNs are usually based on Multi-Layer Perceptrons (MLPs) and
only offer point-wise predictions [31]. This leads to the limitations previously
mentioned, as MLPs can only process limited inputs at once and have proven
to be less robust on complex high-frequency PDEs, leading to failure modes.
This limitation is addressed in the literature by PINNsFormer [44], which is
a Transformer-based architecture[36]. As Transformers are seq-to-seq networks,
the authors propose creating pseudo-sequences based on the temporal index of
the domain. Although PINNsFormer observed significant success over traditional
MLP-based PINNs in overcoming these limitations, PINNsFormer, by default,
is not generalized for the chemical tasks, where domain can include temperature
and pressure and is independent of time.
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To overcome the limitations of MLP-based PINNs and the lack of general-
izability of PINNsFormer, we propose Physics-Informed Transformers (PITs).
In this approach, we suggest a set generation process specifically designed for
the chemical domain, creating task-specific sets for predicting chemical phenom-
ena. We implement PITs for predicting activity coefficients and agglomerate
breakage. Our experiments show that PITs outperform existing state-of-the-art
MLP-based PINN architectures in predicting chemical phenomena.

1.1 Main Contributions

This work presents a significant advancement in predicting chemical phenomena
by introducing Physics-Informed Transformers (PITs), a novel approach that
combines the robust set modeling capabilities of Transformers with the physical
constraints provided by PDEs. Our contributions can be summarized as follows:

– Integration of Physical Constraints with Transformers: We bridge
the gap between data-driven modeling and physical law incorporation by
integrating PDEs directly into the Transformer architecture for chemical
domain. This ensures that the predictions adhere to known physical laws,
enhancing the reliability and interpretability of the results.

– Benchmark state-of-the-art methods: Along with PITs, we benchmark
existing PINN methods on predicting chemical phenomena. The benchmark-
ing process involves a comprehensive evaluation of various PINN approaches,
assessing their performance across multiple datasets.

– Performance in Predicting Chemical Phenomena: Our experiments
demonstrate that PITs significantly outperform existing state-of-the-art PINNs
in predicting chemical phenomena, such as activity coefficients and agglom-
erate breakage. PITs show superior generalization and accuracy, mitigate
failure modes, and achieve faster convergence.

2 Related Work

In this section we discuss related work in physics-informed neural networks and
prediction of chemical phenomena.

2.1 Physics-informed neural networks (PINNs)

Methods to solve partial differential equations (PDEs) have existed for some
time [22, 27], but the recent advancements in deep learning have revitalized this
concept, leading to the development of PINNs [31]. PINNs represent a novel ap-
proach to solving PDEs using neural networks by embedding the PDE structure
directly into the loss function. These networks introduce a residual term to the
loss function that penalizes predictions not conforming to the underlying PDE,
and have led to extensive research and applications. PINNs have been extended
with successful applications in diverse fields such as simulating blood flow in
cardiovascular structures [32], climate forecasting [38], and fluid mechanics [6].
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PINNs primarily follow MLP-based architecture. However, MLP-based PINN
architectures often struggle with stable training and accurate predictions. Wang
et al. [39] identified that multi-scale interactions within the PINN loss function
cause gradient flow stiffness, necessitating stringent stability requirements on the
learning rate. Other research has pointed to inherent failure modes, especially
with high-frequency or multiscale PDEs, where predictions tend to collapse into
overly smooth, trivial solutions [30, 13, 21, 41, 44, 24].

To address these challenges, researchers have explored several strategies, in-
cluding different training schemes, data interpolation techniques, new model ar-
chitectures, and incorporating domain-specific dependencies. Training schemes
can be computationally expensive, as exemplified by Krishnapriyan et al.’s [21]
seq-to-seq approach, which requires sequential training of multiple neural net-
works. Data interpolation methods [15, 25, 40, 41], while useful, often rely on
simulations or real-world scenarios, which can be difficult to obtain. In terms
of alternative architectures, Bu and Karpatne [5] proposed Quadratic Residual
Networks (QRes), introducing quadratic non-linearity before applying activation
functions. Wong et al. [43] advocated for learning in sinusoidal spaces with PINNs
using the First-Layer Sine (FLS) method. Wang et al. [41] integrated the Neural
Tangent Kernel (NTK) with PINNs, constructing scalable kernels, though scala-
bility issues remain as sample size or model parameters increase. Recently, Zhao
et al. [44] introduced PINNsFormer, which accounts for implicit temporal depen-
dencies and outperforms existing methods. However, PINNsFormer is limited to
temporal domains and does not provide mechanism to generalize on chemical
domains. Therefore, in our experiments, we compare PITs against PINNs, FLS,
and QRes.

2.2 Predicting Chemical Phenomena

PINNs have become increasingly popular in chemical engineering and compu-
tational physics for their ability to integrate physical laws directly into neural
network training, enhancing accuracy and generalization where traditional data-
driven models often fail [11]. They have been applied to optimizing chemical
processes and improving reaction models, showing significant improvements in
predictive accuracy for processes such as pig iron desulfurization [28]. In dynamic
modeling of chemical and biotechnological processes, PINNs offer promising re-
sults [37]. In computational physics, PINNs are used to solve complex fluid dy-
namics problems governed by the Navier-Stokes equations, effectively predicting
velocity and pressure fields in laminar flow scenarios around particles, provid-
ing a competitive alternative to traditional CFD methods [16]. PINNs have also
been used in predicting activity coefficients and particle agglomeration.

Predicting Activity Coefficients. Recent advancements have introduced PINNs
using the Gibbs–Duhem equation for predicting binary activity coefficients across
various compositions [34, 3]. This approach embeds the Gibbs–Duhem equation
directly into the neural network’s loss function, utilizing automatic differentia-
tion within standard machine learning frameworks. Unlike hybrid ML methods
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that incorporate specific thermodynamic models into the neural network, this
method avoids associated prediction constraints. PINNs have shown thermody-
namic consistency and generalization in activity coefficient predictions. Addi-
tionally, the choice of model architecture, particularly the activation function,
has been found to significantly influence prediction accuracy. This methodology
is also extendable to other thermodynamic consistency conditions, highlighting
its versatility.

Predicting Particle Agglomeration. Particle agglomeration and breakage are
common phenomena in industries such as chemical, agricultural, and pharma-
ceutical sectors. Recent studies have introduced PINNs to tackle both forward
and inverse problems in these processes [7]. PINN approaches have shown sig-
nificant potential for solving inverse problems in particle aggregation and break-
age, even with noisy data. By integrating the population balance equation into
the neural network’s loss function, this method improves training efficiency and
ensures compliance with physical laws. For forward problems, PINNs provide so-
lutions that closely match analytical results. For inverse problems, data-driven
approaches are used to discover model parameters of population balance equa-
tions. Additionally, it has been reported that the choice of different neural net-
work structures significantly affects outcomes.

Despite their success, traditional PINNs based on MLPs often face challenges
in capturing the implicit dependencies within physical systems, leading to lim-
itations in their robustness. These limitations have led to the development of
advanced architectures, such as the PINNsFormer [44], which leverages the se-
quence modeling capabilities of Transformers to address these issues. However,
the generalizability of PINNsFormer to chemical domains remains limited, par-
ticularly where domain indices such as temperature and pressure are independent
of time. Furthermore, recent advanced MLP-based PINN methods such as FLS
[43] and QRes [5] have not yet been applied and benchmarked on predicting
chemical phenomena.

To overcome the limitations of MLP-based PINNs and the lack of general-
izability of PINNsFormer, in our approach, we suggest a set generation process
specifically designed for the chemical domain, creating task-specific sets for pre-
dicting chemical phenomena leading to improved and robust prediction.

3 Preliminaries

In this section, we will start with the problem statement and hypothesis and then
introduce PINNs and the Transformer architecture. Note that, for simplicity, we
present preliminaries and our method by exemplifying the spatio-temporal do-
main. In general, as shown in our experiments, the proposed method is versatile
and can be extended to specific chemical domains.
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3.1 Problem statement and hypothesis

Problem statement We consider the problem of incorporating physical laws
into the Transformer architecture using PDEs to predict chemical phenomena.

Hypothesis We hypothesize that by exploiting the implicit dependencies in
the chemical domain using the Transformer architecture and integrating phys-
ical laws in the form of PDEs, we can accurately predict chemical phenomena,
avoid failure modes, and achieve faster convergence compared to MLP-based
architectures.

While MLP-based architectures perform point-wise predictions, Transform-
ers can predict multiple points simultaneously, learning the affinities between
them. By generating set inputs that incorporate physical laws, this approach
leverages the efficiency and accuracy of Transformers, enhancing the overall pre-
diction performance and robustness in modeling chemical phenomena.

3.2 Physics-informed Neural Networks (PINNs)

Let us consider nonlinear partial differential equations (PDEs) of the general
form:

ut +N [u] = 0, x ∈ Ω, t ∈ [0, T ], (1)

where u(t, x) is the latent solution of the PDE, ut is the partial derivative of u
w.r.t. t, N [·] is a nonlinear differential operator, Ω ∈ Rd is an open, bounded,
connected spatial domain, and [0, T ] is the time interval.

In the PINNs approach introduced by [31], a physics-informed neural network
f := ut + N [u] is defined, where u(t, x) is approximated by a fully connected
neural network with parameters θ. u(t, x) and f(t, x) share the same parameters
θ, and the inputs (t, x) are randomly sampled from the domain. They employ
automatic differentiation, thus avoiding the need for discretizing the (space-time)
domain and relying instead on random sampling. The weights of the neural
networks are optimized during training with the following loss function:

LPINNs =
1

Nf

Nf∑
i=1

∥∥f(tif , xif )∥∥2 + 1

Nu

Nu∑
i=1

∥∥u(tiu, xiu)− ui
∥∥2 , (2)

where {tiu, xiu, ui}
Nu
i=1 denotes the initial and boundary data on u(t, x), and

{tif , xif}
Nf

i=1 denotes the collocation points for the residual f(t, x). Nu and Nf
denote the number of initial and boundary points, and collocation points, re-
spectively. The differential operator N and other derivatives are evaluated using
automatic differentiation.

3.3 Transformer Architecture

Transformers, initially proposed by [36], have become a cornerstone in sequence
modeling tasks, particularly in natural language processing. The key innovation
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of Transformers is the self-attention mechanism, which allows the model to weigh
the importance of different elements in a sequence dynamically. This ability to
capture long-range dependencies and contextual relationships makes Transform-
ers suitable for a wide range of applications beyond NLP, including time series
forecasting, image processing, and, in our case, predicting chemical phenomena.

A standard Transformer consists of an encoder and a decoder. Both comprise
a multi-head self-attention mechanism that is the backbone of the architecture.
The self-attention mechanism computes attention scores or affinities between all
pairs of elements in the sequence, allowing the model to focus on relevant parts
of the input.

Self-Attention Mechanism The core innovation of Transformers is the self-
attention mechanism, which allows each element of a sequence to attend to every
other element. This is mathematically defined as:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V, (3)

where Q ∈ Rn×dk is the query matrix, K ∈ Rm×dk is the key matrix, V ∈
Rm×dk is the value matrix, dk is the dimension of the key vectors, n is the length
of the query sequence, and m is the length of the key and value sequences.

Each input sequence element is projected into three vectors: a query, a key,
and a value. The attention score for each pair of query and key is computed by
taking the dot product of the query with all keys, dividing by

√
dk (to stabi-

lize gradients), and applying the softmax function to obtain the weights on the
values.

These components work together to process and transform input sequences,
enabling the model to capture complex dependencies and generate accurate pre-
dictions. Sets can replace sequences as input to the Transformer because the
Self-Attention mechanism is permutation-equivariant and supports set model-
ing, as demonstrated by the Set Transformers [23].

4 PITs: Physics-Informed Transformers

We introduce a novel method featuring Transformer architecture, namely Physics-
Informed Transformers (PITs), which (1) exploit the implicit dependencies in a
domain by learning affinities between multiple points and (2) accurately approx-
imate solutions of multiple points in the domain simultaneously.

We illustrate our main idea in Figure 1. First, we generate sets based on
the implicit dependencies in the domain. Then, we learn embeddings for each
element of the set and process them using the Transformer network. Finally, we
perform prediction using the Output Layer. The parameters of PITs are learned
using a set-wise physics loss.

Our method consists of four main components: Set Generator, Embedding
Network, Transformer, and Output Layer, which we will explain in turn. Then,
we present the learning scheme.
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Fig. 1. Physics-Informed Transformers (PITs). An overview of the PITs architec-
ture, illustrating the integration of Transformer networks with physical constraints for
predicting chemical phenomena. The process begins with the Set Generator, which cre-
ates task-specific sets based on the domain’s implicit dependencies. These sets are then
processed by the Embedding Network pψ, transforming low-dimensional inputs into
high-dimensional vectors. The Transformer Network fϕ captures the affinities between
set elements, and the Output Layer qη generates the final predictions. The learning
scheme incorporates a set physics loss, ensuring adherence to physical laws and en-
hancing prediction accuracy.

4.1 Model

Set Generator. Transformers can efficiently and accurately learn affinities be-
tween elements of the input set. Therefore, we design the input set such that
the elements exhibit implicit dependencies rather than being independent. In
our focus on predicting activity coefficients and particle agglomeration, the set
generation process differs for each task, and we discuss these specific processes
in detail in the Section 5.

To generalize the set generation process: we sample N sets from the domain
Ω and represent them as P. Considering a spatio-temporal domain, the set
generator can be defined as:

Ω
set generator
========⇒ {P}Ni=1 s.t. Pl : {(x0l , t0l ), (x1l , t1l ), . . . , (xKl , tKl )}, (4)

where (xil, t
i
l) is the i-th element of the l-th set of P, and K is the number of

elements in a set.

Embedding Network. An element of a set (xil, t
i
l) typically contains low-

dimensional information regarding its state. Since PITs focus on modeling inter-
actions between multiple elements in the set, directly feeding low-dimensional
data is insufficient for accurately learning the affinities between the elements. To
address this, we propose using an Embedding Network in conjunction with the
Transformer network. The Embedding Network learns a parameterized function
pψ that mixes state variables and upscales low-dimensional state representations
into high-dimensional vectors, akin to word embeddings in NLP. These vectors
represent the state within a high-dimensional space. For our use cases, we opt
for a simple fully-connected layer for the Embedding Network, but it can also
be a more sophisticated architecture depending on the problem:
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El = pψ(Pl) s.t. El : {E0
l , E1

l , . . . , EKl }, (5)

where E il represents the embedding of the element (xil, t
i
l) in the set Pl. ψ are

the learnable parameters of the Embedding Network. Notably the Embedding
Network transforms Pl ∈ RK×r to El ∈ RK×d where d≫ r.

Transformer Network. For each set Pl, we now seek an approximate cor-
responding solution set ul that satisfies the PDE in the domain Ω. Using the
Set Generator and Embedding Network, we have generated sets P and upscaled
them to E , which is a set of high-dimensional vectors representing each element
(xil, t

i
l). We seek to learn a solution uil for each element E il of the set El. To achieve

this, we use the Transformer network to process El as it operates as an efficient
set learning network. Transformers are originally used in NLP tasks, but can be
applied to any set learning task. In our case, Transformers can efficiently and
accurately capture affinities among elements in the input set:

Ol = fϕ(El) s.t. Ol : {O0
l ,O1

l , . . . ,OK
l }, (6)

where Oi
l represents the transformed representation of each element E il in set

El. ϕ are the learnable parameters of the Transformer Network. Notably the
Transformer Network transforms El ∈ RK×d to Ol ∈ RK×d.

Output Layer. After processing El using the Transformer Network we get a
transformed representation Ol where each element now has interacted and has
information regarding other elements in the set Pl. We now predict solution ul
using an Output Layer:

ul = qη(Ol) s.t. ul : {u0l , u1l , . . . , uKl }, (7)

where uil represents the solution of each element Oi
l in set Ol. η are the learnable

parameters of Output Layer. Notably the Output Layer transforms Ol ∈ RK×d

to ul ∈ RK×1.

4.2 Learning Scheme

Traditional PINN methodologies concentrate on point-wise predictions and em-
ploy a point-wise PINN loss, as defined in Eq. 2. Given that the proposed PITs
approach involves set predictions, we have modified the conventional PINN loss
to accommodate sets. In PITs, each set Pl corresponds to a predicted solution
ul. This allows for the calculation of the n-th order gradient with respect to the
state variables x and t. For example, for a given set Pl and its solution ul, the

first-order gradients are given by ∂ul

∂xl
=

{
∂ui

l

∂xi
l

}K
i=0

and ∂ul

∂tl
=

{
∂ui

l

∂til

}K
i=0

.
This method of calculating gradients for predicted sets relative to input sets

can be extended to higher-order derivatives and is applicable to residual, bound-
ary, and initial point sets.



10 Nagda et al.

Consequently, we adapt the point-wise PINN objective to the set-wise PITs
objective as follows:

LPITs =
λf
Nf

|N |∑
e=1

K∑
i=1

∥∥fθ(til, xil)∥∥2 + λu
Nu

|M |∑
e=1

K∑
i=1

∥∥uθ(til, xil)− uil
∥∥2 , (8)

where N and M are the sets derived from residual, boundary, and initial data
points, respectively, and K is the number of elements in set e. The parameters
λf and λu are weighting factors, and θ := {ψ, ϕ, η}. Nf and Nu represent all
points in N and M , respectively.

5 Experiments

In this section, we empirically demonstrate that PITs are robust and accurate
across multiple tasks of predicting chemical phenomena. First, we briefly describe
the comparison models in Section 5.1. Then, we benchmark all the models on
predicting activity coefficients and particle agglomeration in Sections 5.2 and
5.3, respectively.

5.1 Model setup

For our baseline models, we selected the standard MLP-based PINNs [31], First-
Layer Sine (FLS) [43], and Quadratic Residual Networks (QRes) [5], which rep-
resent the current state-of-the-art. To ensure fairness, we maintained approxi-
mately the same number of parameters across all baseline models. Our proposed
PITs model utilizes a straightforward Transformer architecture. For training, we
adhered to standard practices, initially using the Adam optimizer [20] followed
by L-BFGS [35]. We evaluated our models using the standard metrics: relative
Mean Absolute Error (rMAE) and relative Root Mean Squared Error (rRMSE).
PITs were trained according to the objective specified in Eq. 8 with λf = λu = 1.
Additional details on model architectures and hyperparameter selection can be
found in Appendix A.1.

5.2 Predicting Activity Coefficients

Activity coefficients are crucial for modeling and simulating reaction and sepa-
ration processes, as they reflect the behavior of molecular components in mix-
tures. Influenced by molecular structure, temperature, and concentration, these
coefficients are challenging and expensive to measure, resulting in limited ex-
perimental data. State-of-the-art physical prediction models like UNIFAC [12],
which comply with thermodynamic consistency criteria, are preferred over ma-
chine learning models [17]. More details on the equations are provided in Ap-
pendix B.1.

In our experiments, we predict activity coefficients using experimental data
while enforcing the Gibbs-Duhem equation constraints. Data from the Dortmund
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Model Activity Coefficient Agglomerate Breakage
MAE MSE rMAE rRMSE

PINNs 0.175± 0.00 0.158± 0.00 0.587± 0.01 0.451± 0.00
QRES 0.188± 0.00 0.169± 0.00 0.657± 0.08 0.512± 0.03
FLS 0.176± 0.00 0.152± 0.00 0.589± 0.00 0.451± 0.00

UNIFAC 0.156 0.166 - -
PITs (ours) 0.137± 0.00 0.090± 0.00 0.318± 0.02 0.220± 0.01

Table 1. Prediction of activity coefficients using experimental data as well as physical
constraints and agglomerate breakage. PITs significantly outperform other baselines.
Significant results (p-value < 0.05) are highlighted in bold, and the variance is captured
over ten runs.

Data Bank (DDB) [2] includes direct and calculated activity coefficients. We
excluded low-quality data and only used components with retrievable SMILES
strings, converting them to canonical SMILES with RDKit [1]. We conducted a
system-wise train-test split, using 10% of systems for testing. RDKit generated
molecular descriptors using a count-based Morgan fingerprint (radius 0, bit size
128). For set generation, we represent each mixture as a set with elements as
tuples of SMILES, temperature, and proportion.

We compare the performance of PITs with physical models (UNIFAC) and
PINN baselines: PINNs, QRES, and FLS. PITs consistently outperformed the
other methods, including the physical UNIFAC model, by achieving the lowest
error rates. These results highlight the effectiveness of PITs in modeling complex
thermodynamic properties and offer a promising approach for enhancing the
precision and reliability of chemical process simulations.

5.3 Predicting Particle Agglomerations

In this study, we use PINNs to address the forward problem of agglomerate
breakage. By embedding the governing population balance equation directly into
the loss function, we ensured that the network adheres to physical constraints.
Details about the underlying equations are provided in Appendix B.2. For set
generation, we sample four neighboring points from the domain and represent
them as one set. We benchmark the proposed PITs model against PINN base-
lines: PINNs, QRES, and FLS. The results, shown in Table 1, indicate that
PITs achieve significantly lower error rates compared to the baseline models.
This superior performance demonstrates the robustness and accuracy of PITs
in capturing the complex dynamics involved in particle aggregation processes,
making them a reliable tool for practical applications.

6 Discussions

Our experiments demonstrate the robustness and precision of PITs in predicting
chemical phenomena. PITs consistently achieve lower error rates compared to
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Fig. 2. PITs achieve faster convergence as opposed to other PINN approaches. Plotted
is the validation loss vs. the number of training iterations.

other state-of-the-art models. The performance improvements of PITs can be
attributed to their capability to model dependencies between different points
within the physical domain. Unlike traditional PINNs that rely on point-wise
predictions, PITs utilize a set-based approach to capture implicit dependencies
in the domain.

A significant challenge in traditional PINNs is their tendency to converge to
overly smooth and trivial solutions. As illustrated in Figure 2, PINNs have the
highest error rates peaking in the plot. PITs address this issue by incorporating
dependencies between different points within a set, effectively capturing the local
interactions and variations that are critical for accurately modeling complex
physical phenomena. By processing these sets using an attention mechanism,
PITs can focus on relevant features and relationships, avoiding the pitfall of
trivial solutions. This is also evident in Figure 2, which shows that PITs achieve
faster convergence and achieve lowest error rates as opposed to baseline methods.

By effectively incorporating physical constraints and leveraging set-based
learning, PITs can model intricate behaviors with high accuracy and are robust
against failure modes across a diverse range of physical systems, making them a
valuable tool for industrial and scientific applications.

7 Conclusion

In this work, we introduced Physics-Informed Transformers (PITs), a novel ap-
proach that leverages the robust sequence modeling capabilities of Transformers
and integrates them with physical constraints through PDEs. This novel method
addresses several limitations of existing PINN architectures, particularly those
based on Multi-Layer Perceptrons (MLPs), by providing a more comprehensive
and accurate prediction model for chemical phenomena. The integration of phys-
ical constraints with advanced Transformer architectures represents a substantial
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step forward in the field of chemical process modeling. Our approach not only
ensures that predictions adhere to known physical laws but also improves the in-
terpretability and robustness of the results. The successful benchmarking against
existing methods further validates the efficacy of PITs in real-world scenarios.

Our study demonstrated that PITs significantly outperform current state-of-
the-art PINN methods in predicting activity coefficients and particle agglomera-
tion. By generating task-specific pseudo-sequences, PITs effectively incorporate
the dependencies inherent in physical systems, leading to superior generaliza-
tion, accuracy, and faster convergence. These advancements mitigate common
failure modes and enhance the reliability of predictions in chemical engineering
applications. In summary, PITs offer a promising solution for accurately pre-
dicting complex chemical phenomena, providing significant improvements over
traditional methods. This work paves the way for future research and applica-
tions in chemical engineering, pharmaceuticals, environmental science, and other
related fields, where precise modeling and understanding of chemical processes
are crucial.
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A Model setup

A.1 Hyperparameters

Model hyperparameters. Table 2 outlines the hyperparameters for the different
models evaluated in this study, including Physics-Informed Neural Networks
(PINNs), Quadratic Residual Networks (QRes), First-Layer Sine (FLS), and
PITs. Each model is configured with a specific number of hidden layers and
hidden sizes. The PITs model also includes additional parameters such as the
number of encoders and decoders, embedding size, and the number of attention
heads. These configurations are crucial for defining the model architectures and
their capacities to learn from the data. Table 3 shows the total parameters of
all models. For a fair comparison, all models have relatively similar numbers of
trainable parameters. For implementation, we follow the same implementation
pipeline as of PINNsFormer4 and use their implementation of PINNs, QRes,
and FLS. The model architecture of PITs is kept standard and consistent with
PINNsFormer (Although we process sets instead of psuedo sequences).

Model Hyperparameter Value

PINNs hidden layers 4
hidden size 512

QRes hidden layers 4
hidden size 256

FLS hidden layers 4
hidden size 512

PITs

set size 4
# of encoder 1
# of decoder 1

embedding size 32
head 2

hidden size 512

Table 2. Hyperparameters for the different models evaluated in the study, including
the number of hidden layers, hidden sizes, and additional parameters for PITs.

Training hyperparameters. The training process for the models utilized specific
hyperparameters as listed in Table 4. The optimization involved a combination of
the Adam optimizer and the L-BFGS optimizer, with a set number of iterations
for each. Additionally, the line search function used in the L-BFGS optimization
was the strong Wolfe condition. Parameters λf and λu were set to specific val-
ues to control the weighting of residual points and boundary points, respectively.
These parameters were kept consistent across all models for a fair comparison.
4 https://github.com/AdityaLab/pinnsformer
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Model Total trainable parameters
PINNs 527K
FLS 527K
QRes 397K
PITs 454K

Table 3. Total number of trainable parameters for all models. For a fair comparison,
all models have relatively similar numbers of trainable parameters.

These training parameters were chosen to ensure efficient and effective conver-
gence of all models during training.

Hyperparameter Value
Adam Iterations 100

L-BFGS Iterations 1000
L-BFGS line search function strong wolfe

λf 1
λu 1

train:val:test 50:21:101

Table 4. Training hyperparameters used for the models, including the number of
iterations for the Adam and L-BFGS optimizers, the line search function, and the
weighting parameters λf and λu. These parameters were kept consistent across all
models to ensure fair comparison and effective convergence.

A.2 Compute

All models are implemented in PyTorch, and are trained separately on single
NVIDIA Tesla V100 GPU. In general, with hyperparameters mentioned in Ap-
pendix A.1 the runtime for one run using PINNs, FLS, QRes, PINNsFormer,
and PITs were: 103, 89, 149, 308, and 215 seconds respectively. The memory
utilization of GPUs are provided in Table 5.

Compute Value
PITs GPU Memory (set size = 4) 1.8MiB

PINNs GPU Memory 2.1MiB
FLS GPU Memory 2.1MiB
QRes GPU Memory 1.6MiB

Table 5. Approximate memory utilization by each model.
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A.3 Training and Evaluation

Training Algorithm. The training algorithm for PITs, outlined in Algorithm 1,
involves initializing the model parameters for the Set Generator, Embedding
Network, Transformer Network, and Output Layer. During each training itera-
tion, the algorithm processes each element in the discretized domain by sampling
points to generate a set, transforming this set into a high-dimensional space using
the Embedding Network, and then processing it with the Transformer Network.
The transformed set is used by the Output Layer to predict solutions. The set-
wise physics loss, defined in Equation 8, is computed to ensure adherence to
physical laws. The model parameters are updated iteratively using the Adam
optimizer, followed by fine-tuning with the L-BFGS optimizer, to achieve effi-
cient and accurate convergence. This approach leverages set-based processing
and transformer networks to simultaneously approximate solutions for multiple
points in the domain.

Algorithm 1 Training Algorithm for PITs
Require: Sampled N sets from the domain Ω
Require: Set Generator
Require: Embedding Network pψ
Require: Transformer Network fϕ
Require: Output Layer qη
Require: Hyperparameters λf , λu
1: Initialize model parameters ψ, ϕ, η
2: for each training iteration do
3: for each set Pl do
4: Transform Pl into high-dimensional space El using Embedding Network pψ
5: Process set El and obtain Ol using Transformer Network fϕ
6: Predict solutions ul using Output Layer qη
7: end for
8: Compute set-wise physics loss as defined in Equation 8
9: Update model parameters ψ, ϕ, η

10: end for

Evaluation. The performance of the models was evaluated using two key metrics:
Relative Mean Absolute Error (rMAE) and Relative Root Mean Square Error
(rRMSE). The rMAE metric, as defined in Equation 9, calculates the mean ab-
solute difference between the predicted and actual values, normalized by the
mean of the actual values. This metric provides insight into the average magni-
tude of prediction errors relative to the actual values. The rRMSE, defined in
Equation 10, measures the square root of the mean squared differences between
predicted and actual values, normalized by the root mean square of the actual
values. Both metrics are essential for assessing the accuracy and robustness of
the models’ predictions across different datasets and scenarios.
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rMAE =
ΣN
n=1|ŷn − yn|
ΣN
n=1|yn|

(9)

rRMSE =

√
ΣN
n=1|ŷn − yn|2
ΣN
n=1|yn|2

(10)

B Experiment Setup

B.1 Predicting Activity Coefficients

Activity coefficients are a central thermodynamic property describing the be-
havior of components in mixtures. They are crucial for modeling and simulating
reaction and separation processes, such as distillation, absorption, and liquid-
liquid extraction. Each component in a mixture has an individual activity coeffi-
cient that depends on the molecular structure of the components, temperature,
and concentration in the mixture (typically given in mole fractions ranging from
0 to 1).

Measuring activity coefficients is time-consuming and expensive, resulting in
scarce experimental data. Consequently, prediction methods are commonly used,
often based on physical theories. Compared to machine-learning models, physical
models have the advantage of complying with thermodynamic consistency cri-
teria, such as the Gibbs-Duhem equation, which relates the activity coefficients
within a mixture. For binary mixtures at constant temperature and pressure,
the Gibbs-Duhem equation is:

x1

(
∂lnγ1
∂x1

)
T

+ (1− x1)

(
∂lnγ2
∂x1

)
T

= 0 (11)

where lnγ1 and lnγ2 are the logarithmic activity coefficients of the two com-
ponents, T is the temperature, and x1 is the mole fraction of the first component.

The experimental activity coefficient data set was obtained from the Dort-
mund Data Bank (DDB). Data on activity coefficients at infinite dilution were
directly adopted from the DDB. Activity coefficients were also calculated from
vapor-liquid equilibrium data from the DDB. During preprocessing, data points
labeled as poor quality by the DDB were excluded. Additionally, only compo-
nents with retrievable SMILES (simplified molecular-input line-entry system)
strings using the CAS number (preferred) or component name from the Cactus
database were considered. SMILES were then converted into canonical SMILES
using RDKit, resulting in the exclusion of some SMILES that could not be con-
verted.

A system is defined as the combination of two components. The train-test
split was done system-wise, with 10% of the systems used for the test set. RDKit
was used to create molecular descriptors for each component, specifically using
a count-based Morgan fingerprint with zero radius and a bit size of 128.
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B.2 Predicting Particle Agglomeration

Population balance equations (PBE) are a well-established method for calculat-
ing the temporal evolution of particle property distributions u(x, t), with appli-
cations in various fields [33]. Generally, PBEs are integro-differential equations
requiring numerical solutions. We investigate the one-dimensional case of pure
agglomerate breakage, where analytical solutions exist for specific boundary con-
ditions. The PBE is given by:

∂u(x, t)

∂t
=

∞∫
x

f(x, x′)r(x′)u(x′, t)dx′ − r(x)u(x, t), (12)

IC: u(x, 0) = δ(x− L)

BC: r(x) = x

f(x, y) =
2

y

Here, the breakage rate r and breakage function f are the so-called kernels
and define the system’s physical behavior. The analytical solution for this special
case is formulated as [45]:

u(x, t) = exp (−tx)
(
δ(x− L) +

[
2t+ t2(L− x)

]
θ(L− x)

)
(13)

with δ being the Dirac delta function and

θ(x− L) =

{
1, x < L

0, otherwise
. (14)

In a real-world setting, where only experimental data is available, the kernel
values are generally unknown. Although empirical equations exist, they must be
calibrated to experiments, making benchmarking solely on experimental data
impossible. Therefore, we used the provided special case. However, it should be
noted that PINNs have already been applied for solving the inverse problem,
i.e., estimating unknown kernels [8]. Improved accuracy on synthetic data will
likely correspond to higher accuracy in the inverse problem when applied to
experimental data.


