
Retrieval-Augmented Instruction Tuning for
Automated Process Engineering Calculations :
A Tool-Chaining Problem-Solving Framework

with Attributable Reflection

Sagar Srinivas Sakhinana1(�), Geethan Sannidhi2, and Venkataramana
Runkana1

1 TCS Research, India {sagar.sakhinana, venkat.runkana}@tcs.com
2 IIIT Pune, India geethansannidhi20@cse.iiitp.ac.in

Abstract. The current technology landscape lacks a foundational AI
model for solving process engineering calculations. In this work, we intro-
duce a novel autonomous agent framework leveraging Retrieval-Augmented
Instruction-Tuning (RAIT) to enhance open, customizable small code
language models (SLMs) for these calculations. By combining instruction-
tuned code SLMs with Retrieval-Augmented Code Generation (RACG)
using external tools, the agent generates, debugs, and optimizes code
from natural language specifications. Our approach addresses the lim-
itations of the current lack of a foundational AI model for specialized
process engineering tasks and offers benefits of explainability, knowledge-
editing, and cost-effectiveness. Additionally, we curate custom datasets
of chemical and process engineering problems and solutions to overcome
data scarcity. Experimental results show that our framework matches the
performance of large-scale proprietary models on benchmark datasets,
proving its effectiveness and usability.

Keywords: Retrieval-Augmented Instruction-Tuning (RAIT) · Chemi-
cal Process Principes and Calculations.

1 Introduction
Basic chemical principles and process calculations, including material and en-
ergy balances, heat transfer, phase equilibrium, and reaction kinetics, underpins
modeling and optimization in the chemical process industries. These principles
are crucial for control and optimization. Process dynamics predict plant behav-
ior and stability, while control ensures desired conditions, quality, and safety.
Optimization maximizes profitability, productivity, and efficiency within con-
straints, contributing to operational excellence. Advances in generative AI, par-
ticularly general-purpose large language models (LLMs) like OpenAI’s GPT-4
[5] and Google’s Gemini [8], have shown remarkable proficiency in mathematical
reasoning and problem-solving skills due to extensive pretraining, revolutioniz-
ing various fields. These LLMs can assist engineers in making informed deci-
sions and innovating in the chemical and process industries as decision support
tools. Despite these advancements, their ability to solve complex chemical and
process calculations remains understudied. Additionally, there is currently no
specialized foundational model built for tackling complex chemical and process
calculations. There is a need to fine-tune existing pre-trained LLMs on large-
scale, domain-specific datasets to develop a new core foundational AI model

2 Sakhinana, S. S., et al.

for solving complex chemical and process calculations. The size and complex-
ity of closed-source LLMs like GPT-4 make it difficult to customize them for
specialized tasks and edit knowledge, particularly on consumer hardware with
limited computational budgets. In contrast, open small language models (SLMs)
like Google Gemma[9] and Meta Llama[10] offer domain-specific customization
and interpretable analysis. However, SLMs may lack relevant domain-specific
mathematical reasoning and problem-solving capabilities compared to propri-
etary LLMs due to limited relevant pre-trained knowledge. Despite these limita-
tions, a customizable SLM fine-tuned on high-quality domain-specific datasets
can achieve performance comparable to large-scale models while offering ad-
vantages like explainability and cost-effectiveness. Recently, there has been a
surge of interest in exploring tool-augmented SLMs powered by external symbolic
tools, numerical software tools, and APIs for program-guided solving that gen-
erates executable code to tackle complex mathematical problems. To overcome
the drawbacks of limited domain-specific knowledge and better incorporate and
utilize external knowledge from databases, we introduce Retrieval-Augmented
Instruction-Tuning (RAIT). RAIT technique enhances the capabilities of SLMs
by combining Retrieval-Augmented Code Generation (RACG) through external
tool usage with instruction-tuning techniques. This approach uses both retrieved
information and fine-tuned knowledge for generating code to solve chemical and
process engineering problems. However, there are currently no publicly avail-
able high-quality labeled datasets of chemical and process engineering problems
and solutions to customize SLMs through instruction-tuning. To address this
gap, we have curated custom datasets from various scholarly sources suitable
for the instruction-tuning of SLMs. The instruction-tuned SLMs utilize both in-
ternal parametric pre-trained knowledge and relevant external knowledge from
tool invocation (e.g., numerical libraries and code documentation, Stack Over-
flow, Wolfram Alpha API) with chain-of-thought (CoT)[?] reasoning to assist in
code generation and debugging. In this work, we introduce an autonomous agent
framework that can independently write, debug, and optimize code for solving
complex process calculations fundamental to chemical process design, analysis,
and optimization. Figure 1 depicts the framework.

Python Libraries &
Code

Documentation

Query

 USER

Scholarly Sources

Stack Overflow

Wolfram Alpha

 Tools

 Query

 Response

 Single-Agent

 Self-Reflection
and

Correction

Python Interpreter

Fig. 1. The figure depicts a single-agent framework for question answering (QA) for
solving complex chemical and process engineering calculations.

The agentic framework combines instruction-tuned code-specific language
models (such as Google Code Gemma or Meta Code Llama) with Retrieval-

2. PROPOSED METHOD 3

Augmented Code Generation (RACG), utilizing the ReAct prompting technique
for external knowledge retrieval and reasoning capabilities to generate code from
natural language specifications. It follows a five-stage workflow: task planning to
analyze the user query and break it into sub-tasks, tool selection to pick the best
external tool for each sub-task, parameter extraction from the user query, tool
invocation with the extracted parameters, and result integration to synthesize
a comprehensive response. The agent can generate executable programs that
strategically chain multiple tools to solve complex tasks, eliminating the need
for manually designed pipelines. The framework caches successful programs for
efficient reuse on similar future tasks. Additionally, it employs an attributable
reflection mechanism to handle runtime errors. If such errors occur during pro-
gram execution, this mechanism identifies the specific tool call causing the error
and iteratively revises the program using tool documentation, error information,
and program history. This process continues until the program executes suc-
cessfully or reaches a fixed number of iterations, enabling iterative refinement
and improvement of the generated code. The following sections will discuss the
framework for solving process engineering problems in great detail, including
comprehensive experiments to evaluate the proposed approach. In summary,
our contributions are as follows:
– Our work addresses the challenge of applying AI to complex chemical engi-

neering problems by introducing a novel framework. This framework uses a
Retrieval-Augmented Instruction-Tuning (RAIT) approach to enhance open
SLMs with both domain-specific knowledge from curated datasets and ex-
ternal tools like numerical libraries and APIs. This enables the development
of an autonomous agent that can understand natural language instructions,
generate, debug, and optimize code to solve intricate process calculations. By
combining internal knowledge representation with external tool utilization,
this framework aims to provide engineers with a powerful and adaptable tool
for process design, analysis, and optimization. We evaluate the effectiveness
of our autonomous agent framework in solving complex process calculations
through a combination of automatic metrics and a comprehensive user study.
Experimental results support our hypothesis that the proposed framework
significantly improves solution quality while maintaining high accuracy and
efficiency, demonstrating performance comparable to proprietary models.

2 Proposed Method
In this work, we introduce an autonomous agent framework designed to write, de-
bug, and optimize code for systematically solving complex chemical and process
calculations, fundamental to the design, analysis, and optimization of the chemi-
cal process industry (CPI). The agent performs Retrieval-Augmented Code Gen-
eration (RACG), utilizing advanced code-specific small language models (SLMs)
such as Google CodeGemma[1] or Meta CodeLlama[4] with the ReAct (Reason +
Act) prompting[12] technique to understand and generate code from natural lan-
guage specifications. Code SLMs lack pre-trained knowledge to generate code for
solving chemical and process calculations. Conversely, fine-tuning[14] by incor-
porating relevant domain-specific knowledge offers task-specific customization

4 Sakhinana, S. S., et al.

of code SLMs to generate code for solving process calculations. While RACG
techniques[3] allow code SLMs to access external tools[7] for code generation,
they are often not pre-trained to seamlessly incorporate retrieved information
from invoking external tools, leading to less grounded and reliable answers. To
address these issues, we utilize the RAIT approach to optimally adapt code
SLMs through a fine-tuning technique for domain-specific RACG with tool us-
age, thus overcoming the limitations of both approaches: limited pre-trained
knowledge and the inability to effectively leverage external tools. This leads to
improved code generation. The ReAct (Reason + Act) technique enhances the
capabilities of code SLMs by prompting them to generate verbal reasoning traces
and task-specific actions, helping the code SLM plan and update actions while
enabling tool usage to retrieve relevant information. Such tools include APIs
like Stack Overflow and Wolfram Alpha, as well as scholarly sources such as
code documentation. ReAct employs few-shot learning with examples of task-
solving trajectories that include reasoning-action-observation steps, making the
agent effective in knowledge-intensive tasks like code generation. This approach
allows the agent to reason over external knowledge retrieved from tool usage,
extending its capabilities beyond its pre-trained knowledge. We also utilize it-
erative code generation and refinement through a verify-then-correct approach,
involving verification with external critiques to generate feedback and subse-
quent correction, ensuring the accuracy of the generated code. The autonomous
agents operate with a five-stage workflow: task planning, tool selection, param-
eter extraction from user queries, tool invocation, and result integration. This
structured approach maximizes the agents’ utility and effectively addresses a
wide range of end-user queries through the strategic use of external tools. Task
planning involves analyzing the user query to understand the high-level goal
and then decomposing it into smaller, manageable sub-tasks. These sub-tasks
are organized into a task dependency graph to ensure proper execution order.
During tool selection, the most suitable tool is chosen to solve each sub-task
from the external tool set. In the parameter extraction stage, the required pa-
rameters are extracted from the user query, and in the tool invocation stage,
the tool is invoked with these parameters to obtain results. In response gener-
ation, the objective is to integrate multiple tool outputs with the code SLM’s
internal knowledge to generate a comprehensive response. This involves the code
language model synthesizing information from the tools and combining it with
its fine-tuned knowledge to provide a detailed and accurate response, which
may include summarizing the tool outputs. If the initial response is incomplete
or requires refinement, an iterative feedback loop[2] adjusts the task planning
process, ensuring continuous improvement of the agent’s performance. For code
LMs, tools include external resources such as APIs, software libraries, debug-
ging tools, and knowledge bases like scholarly sources. Leveraging these tools
enhances the code generation capabilities of autonomous agents, enabling them
to execute, evaluate, and optimize code to meet specific requirements. Addition-
ally, these tools help identify and resolve errors, facilitating better understanding,
generation, and manipulation of code for solving complex chemical and process

2. PROPOSED METHOD 5

calculations. In summary, the proposed autonomous agent enables code SLMs
to act as multi-tool users by generating programs that utilize a chain of tools,
aiding in planning and executing complex tasks for solving practical chemical
and process calculations. It addresses the limitations of existing ad hoc methods,
where tool interaction workflows are manually designed and struggle to gener-
alize to different scenarios. We implement program caching, storing generated
programs that successfully complete tasks. This caching allows code SLMs to
refer to these programs in future tasks, enabling efficient reuse of previously cor-
rect code. This memory of correct code helps reduce redundancy and enhances
the efficiency of generating new programs for similar tasks. We illustrate the
proposed framework’s operation in Tables 1-6 by solving a dynamic modeling
problem for a continuous stirred-tank reactor (CSTR) using numerical methods.
The task begins with formulating a differential equation for the concentration
of a reactant over time. Next, we select the appropriate tools—SciPy for solv-
ing differential equations, NumPy for numerical operations, and Matplotlib for
plotting results. Parameters are extracted from the user query, and the tools
are invoked using a Reason + Act + Observe technique. This approach allows
the autonomous agent to effectively integrate the outputs from multiple tools,
culminating in a plot of the concentration profile over time. This example shows
how the agent generates an accurate response by combining tool outputs with
its internal knowledge.

Question.

A continuous, stirred-tank reactor is initially full of water with the inlet and exit
volumetric flow rates of water having the same numerical value. At a particular time,
an operator shuts off the water flow and adds caustic solution at the same volumetric
flow rate q, but with concentration ci. If the liquid volume V is constant, the dynamic
model for this process is V dc

dt
+qc = qci, where c(t) is the exit concentration. Calculate

c(t) and plot it as a function of time, given V = 2m3, q = 0.4m3/min, and ci =
50 kg/m3. The initial condition is c(0) = 0.

Table 1. Question describing the dynamic model and task for a continuous, stirred-
tank reactor.

Task Planning.

– Formulate the differential equation:
• The high-level goal is to solve the differential equation for a continuous

stirred-tank reactor (CSTR) given the problem parameters.
• The differential equation is: V dc

dt
+ qc = qci.

– Convert to standard for:
• Convert the equation to the standard form for solving: dc

dt
= q

V
(ci − c).

– Define sub-tasks:
• Define the ODE function.
• Set initial conditions.
• Solve the ODE using SciPy.
• Plot the results.

Table 2. Task planning steps to solve the dynamic model for a stirred-tank reactor.

6 Sakhinana, S. S., et al.

Tool Selection.
– SciPys ‘solve_ivp’: Selected for solving the initial value problem for the ODE.

– NumPy: Used for handling data arrays and calculations.

– Matplotlib: Used for plotting the results.

Table 3. Tool selection for solving the initial value problem for the differential equation
of the continuous stirred-tank reactor.

Parameter Extraction.

– Volume of the reactor: V = 2m3.

– Flow rate: q = 0.4m3/min.

– Inlet concentration: ci = 50 kg/m3.

– Initial condition for the concentration: c(0) = 0.

Table 4. Parameter extraction for solving the differential equation of the continuous
stirred-tank reactor.

Tool Invocation with ReAct (Reason + Act) Technique.

– Reason:
• Recognize that the differential equation needs to be solved numerically.
• Understand that ‘solve_ivp‘ from SciPy is suitable for this purpose.

– Act:
• Implement the ODE function.
• Set up the initial conditions and parameters.
• Use ‘solve_ivp‘ to solve the ODE.
• Generate a time array for evaluation points.

– Reason:
• Identify the need to visualize the solution..

– Act:
• Use Matplotlib to plot the concentration profile over time.

Table 5. Tool invocation using the ReAct (Reason + Act) technique to solve and
visualize the differential equation for the continuous stirred-tank reactor.

Note: This illustration is intentionally simplified for ease of understanding.
While it demonstrates the key steps of the framework, real-world applications
may involve more complex scenarios and additional computational steps. We
begin by decomposing a user query Q into smaller, manageable sub-tasks. Given
a natural language query Q, the aim is to enable the code language model to use a
sequence of tools from the set T = {t1, t2, . . . , t|T |}, along with their arguments,
to generate an executable program C. The agent initially decides whether it
requires tool usage to solve the sub-task. When tools are not required, the agent
relies on its internal pre-trained knowledge to solve the task. If tools are needed,
the program chains them together to solve the task. The tool protocols provide
meta-information to understand the tools’ purpose and usage. The tool protocols
D = {d1, d2, . . . , d|D|} contain documented protocols di corresponding to each
tool ti ∈ T . Each protocol di ∈ D provides detailed information about its tool
ti, including argument requirements specifying the inputs needed to run the
tool, an overview of the tool’s functionality and use cases, and the response

2. PROPOSED METHOD 7

schema outlining the expected output structure and type. We retrieve relevant
information from external tool usage such as through similarity searches on
scholarly articles, web search results, numerical libraries, and Stack Overflow or
Wolfram API for mathematical problem-solving tasks. The retrieved information
is then used to augment language models for code generation. The detailed tool
protocols allow the code language model M to learn tool usage, understand the
input-output schema, capabilities of various tools, and data flow dependencies,
enabling it to generate executable programs C that appropriately chain together
and utilize multiple tools to solve the natural language task, represented as:

C = M(Q, T ,D, Ic)

Result Integration.
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import solve_ivp

Given data
V = 2 # m^3
q = 0.4 # m^3/min
c_i = 50 # kg/m^3

Define the ODE function
def cstr_ode(t, c, V, q, c_i):

return (q/V) * (c_i - c)

initial concentration of A in the reactor
c0 = [0]

Time span for the solution
t_span = (0, 50) # specifies the start and end times for the integration
t_eval = np.linspace(0, 50, 500)

Solve the ODE
solution = solve_ivp(cstr_ode, t_span, c0, args=(V, q, c_i), t_eval=t_eval)

Extract the results
t = solution.t
c = solution.y[0]

Plot the results
plt.figure(figsize=(10, 6))
plt.plot(t, c, label=’c(t)’, color=’b’)
plt.xlabel(’Time (minutes)’)
plt.ylabel(’Concentration of A (kg/m^3)’)
plt.title(’Concentration of A in the Reactor Over Time’)
plt.legend()
plt.grid(True)
plt.show()

Table 6. Result integration code to solve and visualize the differential equation for the
continuous stirred-tank reactor using Python.

where Ic indicates a concise instruction prompt provided to the language
model for program generation. The generated program C, by planning a sequence

8 Sakhinana, S. S., et al.

of tool invocations, simplifies the complex task-solving process. By executing
the generated program using a code interpreter, the final result (i.e., execution
feedback) r is obtained, which can be represented as:

r = Execute(C)
In essence, by leveraging the tool protocols, the code language model can

automatically generate programs that strategically chain multi-step tool calls
and parse their outputs to solve complex tasks, eliminating the need for manually
designed pipelines but potentially encountering runtime errors. If a runtime error
occurs during program execution, a reflection mechanism identifies and revises
the program to fix the error. If code generation raises an error, the result rj
obtained during the jth iteration includes the error message, the faulty code
snippet, and the error trace to identify the specific tool causing the error. The
code language model localizes the specific tool call tj that triggers the error,
represented as follows: tj = M(Q, T , Ia, rj)

where Ia indicates the instruction prompt to identify and attribute the error
to a specific tool. The identified tool tj and its documentation dj , along with
the error message, are used to revise the generated program as follows:

Cj = M(Q, T ,D, Ic, rj , {(C<j , r<j)}, dj)
where Cj is the revised program after the jth iteration of error handling and

correction. (C<j , r<j) is the history of all previously generated programs and
their corresponding results up to, but not including, the jth iteration. Ic is the
instruction prompt for generating the revised program. This process repeats un-
til the program executes successfully or reaches the predefined maximum number
of iterations. In summary, programming with an attributable reflection mecha-
nism[13] allows the code LM to introspect on errors, isolate the fault to a specific
tool usage, and iteratively refine the program by leveraging tool protocols, error
information and the history of prior programs and results. The proposed frame-
work can dynamically generate, execute, and refine programs to solve complex
chemical and process industry problems efficiently.

3 Experiments
Datasets: The Retrieval-Augmented Instruction-Tuning (RAIT) technique, which
combines tool-augmented RACG and instruction-tuning techniques, can enhance
code SLMs’ capabilities in handling complex chemical and process engineering
problems. To optimize their performance, code SLMs require extensive instruction-
tuning using curated datasets to overcome the limitations of their lack of pre-
training knowledge, ensuring familiarity with the terminology, methodologies,
and typical problem-solving approaches in chemical and process engineering.
Solving these problems demands a strong grasp of mathematical concepts and
advanced computational tools (e.g., Python libraries). We address this by us-
ing instruction-tuning to equip code SLMs with both theoretical knowledge
and computational tool learning, allowing them to utilize appropriate tools,
thereby augmenting their domain-specific expertise for solving complex chemi-
cal and process engineering problems. We have curated a custom instruction-
tuning dataset focused on mathematical modeling and numerical algorithms

3. EXPERIMENTS 9

from academic sources and open repositories. The Mathematical and Computa-
tional Instruction-Tuning (MathComp) dataset comprises over 7,500 instruction-
question-answer triplets designed to adapt code SLMs to computational tool us-
age, facilitating the generation of executable code to solve ordinary differential
equations (ODEs), partial differential equations (PDEs), differential-algebraic
equations (DAEs), linear algebra problems, and optimization tasks. Addition-
ally, we have custom-built a Chemical Process Instruction-Tuning (ChemProc)
dataset of over 5,000 instruction-QA pairs from scholarly sources and public
repositories. This dataset covers topics such as mass and energy balances, ther-
modynamics, heat and mass transfer, reaction kinetics and reactor design, fluid
mechanics and transport phenomena, separation processes, process control, and
optimization. The extensive training of code SLMs on these diverse datasets
enables them to solve complex chemical and process engineering problems by
leveraging domain-specific knowledge and advanced computational techniques.

Experimental Settings: We utilized custom-built MathComp and ChemProc
datasets essential for building and evaluating a robust framework capable of
handling real-world complex chemical and process engineering problems. These
benchmark datasets were split into 70% training, 15% validation, and 15% test
sets. Relevant scholarly sources (e.g., textbooks, Python libraries documenta-
tion) providing detailed explanations and examples of both numerical methods
and chemical and process engineering problems were parsed using a sliding win-
dow technique to improve information retrieval. Text chunks were embedded and
indexed, with metadata attached to each chunk, including the source document,
section title, and chunk position. Images were processed using OpenAI GPT-4
(Omni) to generate text descriptions, which were then indexed for multi-modal
search. Scholarly sources play a crucial role in providing high-quality, structured,
and comprehensive information that enhances the framework’s ability to gener-
ate accurate and contextually relevant code solutions for complex engineering
problems. We used the open-source BGE embedding method to retrieve relevant
passages for knowledge-augmented code generation. To improve retrieval perfor-
mance for code generation, we fine-tuned an embedding method to rank relevant
documents higher by learning semantic relationships. We also used the BGE
rerank model to prioritize the most relevant information and fine-tuned for do-
main adaptation to assign higher relevance scores to the most pertinent passages.
The performance of the proposed framework was compared against proprietary
models like GPT-4 (Omni), GPT-4 Turbo-preview, Claude-3 Opus, and Google
Gemini Pro to ensure a comprehensive evaluation against general-purpose LLMs.
We performed instruction-tuning of the code SLMs (Code Gemma-7b-it and
Meta Code Llama-7b-hf) using Hugging Face’s PEFT library techniques like
QLoRA on benchmark datasets for autoregressive code generation on consumer
hardware. The code SLMs’ fine-tuning leveraged a comprehensive hyperparam-
eter configuration: a batch size of 16, a learning rate of 2×10−4 adjusted with a
constant scheduler over 50 epochs, 100 warmup steps, a weight decay of 1×10−4,
gradient accumulation of 5 steps, and the AdamW optimizer. To ensure efficient
parameter updates, we utilized 4-bit QLoRA with a low-rank r of 16, α of 32, and

10 Sakhinana, S. S., et al.

a dropout of 0.05. We utilized NVIDIA GPUs for training, and for evaluation,
we performed multiple independent runs and reported ensembled averages.

Evaluation Metrics: Code SLMs integrate code generation skills, such as the
ability to generate and refine code, within the broader framework of tool learning.
This enables them to better handle complex mathematical reasoning and pro-
gramming tasks, thereby improving problem-solving skills in chemical and pro-
cess calculations. Our study employs various evaluation metrics to assess the ef-
fectiveness of the code SLMs’ tool learning capabilities[6] across different stages:
task planning, tool selection, tool calling, and response generation. For task plan-
ning, we use Tool Usage Awareness, Pass Rate, and Accuracy. Tool Usage Aware-
ness measures the ability to identify if a query requires an external tool, expressed
as Awareness = Number of Correct Identifications

Total Number of Queries . Pass Rate assesses task planning ef-
fectiveness, calculated by Pass Rate = Number of Successfully Completed Tasks

Total Number of Tasks . Accu-
racy evaluates the precision of the plan, calculated as Accuracy = Number of Correct Plans

Total Number of Plans .
For tool selection, we use Recall@K, NDCG@K, and COMP@K. Recall@K mea-
sures the proportion of selected top-K tools present in the set of ground-truth
tools, formulated as Recall@K = 1

|Q|
∑|Q|

q=1

|TK
q ∩T∗

q |
|T∗

q | , where |Q| is the set of

queries, T ∗
q is the set of relevant tools for the query q, and TK

q is the top-
K tools for the query q selected by the framework. NDCG@K considers the
proportion and positions of positive tools, with Discounted Cumulative Gain
(DCG@K) calculated as DCGq@K =

∑K
i=1

2gi−1
log2(i+1) , where gi is the graded

relevance score (assigned by human evaluators) at position i ≤ K in the top-K
list. IDCG@K is Ideal Discounted Cumulative Gain. COMP@K assesses whether
the top-K selected tools form a complete set with respect to the ground-truth
set, defined as COMP@K = 1

|Q|
∑|Q|

q=1 I(Φq ⊆ ΨK
q). Φq is the ground-truth tool

set for query q, and ΨK
q is the top-K tools retrieved for query q. For tool call-

ing, we use Consistency with Stipulations, Correctness of Parameter Extrac-
tion, and Error Handling as evaluation metrics. Consistency with Stipulations
measures how well the provided parameters match the tool’s documentation re-
quirements, calculated as

(
Number of parameters consistent with the stipulations

Total number of parameters required

)
. Cor-

rectness of Parameter Extraction evaluates the accuracy in extracting correct pa-
rameters from the user query, defined as

(
Number of correctly extracted parameters

Total number of parameters

)
.

Error Handling assesses the system’s ability to manage errors during tool call-
ing, measured as

(
Number of errors handled successfully
Total number of errors encountered

)
. For response generation, we

use BLEU, ROUGE-L, and Exact Match. BLEU is calculated as BLEU =

BP · exp
(∑N

n=1 wn log pn

)
. ROUGE-L is calculated as ROUGE-L = Fβ =

(1+β2)·LCS-precision·LCS-recall
LCS-precision+β2·LCS-recall , where LCS-Precision is the ratio of the length of

the Longest Common Subsequence (LCS) to the total number of words in the
candidate response and LCS-Recall is the ratio of the length of the LCS to
the total number of words in the reference response. Exact Match is calculated
as Exact Match = Number of Exact Matches

Total Number of Responses . These evaluation metrics provide a
comprehensive framework for evaluating the performance of code SLMs in tool

3. EXPERIMENTS 11

learning tasks, ensuring that they can effectively plan, select, call, and integrate
tools to enhance their problem-solving capabilities.

Experimental Results: The table 7 compares algorithms in task planning by
Tool Usage Awareness (TUA), Pass Rate (PR), and Accuracy (Acc), all in %.
TUA ranges from 0% (failure) to 100% (perfect identification). PR ranges from
0% (none correct) to 100% (all correct). Acc ranges from 0% (none identified
correctly) to 100% (all identified correctly). The table 8 compares algorithms in
tool selection by Recall, NDCG, and COMP metrics. Recall ranges from 0 (none
relevant) to 100 (all relevant). NDCG ranges from 0 (worst) to 1 (ideal). COMP
ranges from 0 (none selected) to 100 (all selected).

Algorithm Tool Usage Awareness (%) Pass Rate (%) Accuracy (%)

GPT-4 (Omni) 95.12 90.45 92.78
GPT-4 Turbo-preview 93.34 88.56 90.23
Claude-3 Opus 92.47 87.89 89.65
Google Gemini Pro 94.15 89.37 91.58
Proposed Framework 86.89 82.34 84.21

Table 7. The table provides a comprehensive overview of performance evaluation met-
rics and their corresponding results for LLMs in the context of task planning.

Algorithm Recall (%) NDCG COMP (%)

GPT-4 (Omni) 92.54 0.88 90.12
GPT-4 Turbo-preview 90.23 0.85 88.45
Claude-3 Opus 89.67 0.84 87.34
Google Gemini Pro 91.12 0.86 89.76
Proposed Framework 83.45 0.75 81.23

Table 8. The table offers a summary of key performance evaluation metrics and cor-
responding results for LLMs performance in tool selection

Algorithm Cons (%) PE (%) EH (%)

GPT-4 (Omni) 93.12 91.34 90.67
GPT-4 Turbo-preview 91.45 89.78 88.56
Claude-3 Opus 90.23 88.45 87.34
Google Gemini 1.0 Pro 92.56 90.12 89.89
Proposed Framework 84.23 82.45 81.67

Table 9. The table presents LLM performance in tool calling, evaluated using key
metrics.

Algorithm BLEU ROUGE-L Exact Match (%)

GPT-4 (Omni) 0.87 0.85 90.37
GPT-4 Turbo-preview 0.85 0.83 88.49
Claude-3 Opus 0.84 0.82 87.03
Google Gemini 1.0 Pro 0.86 0.84 87.57
Proposed Framework 0.78 0.76 80.92

Table 10. The table summarizes performance metrics for LLMs in response generation.
The table 9 compares algorithms in tool calling by Consistency with Stipu-

lations (Cons), Correctness of Parameter Extraction (PE), and Error Handling
(EH), all in %. Cons ranges from 0% (none meet requirements) to 100% (all
meet requirements). PE ranges from 0% (none correct) to 100% (all correct).

12 Sakhinana, S. S., et al.

EH ranges from 0% (ineffective) to 100% (effective). The table 10 compares al-
gorithms in response generation by BLEU, ROUGE-L, and Exact Match (EM).
BLEU ranges from 0 (worst) to 1 (perfect). ROUGE-L ranges from 0 (no com-
mon subsequence) to 1 (perfect common subsequence). EM ranges from 0% (none
match) to 100% (all match). The experimental results indicate that the proposed
framework is effective; however, it lags slightly behind the proprietary models.
We conducted several ablation studies to thoroughly evaluate our framework,
which leverages the RAIT technique to enhance code SLMs for solving complex
chemical and process engineering calculations. The ablation studies aim to isolate
and quantify the contributions of key components: the ReAct (Reason + Act)
prompting technique (without ReAct), integration of external knowledge (with-
out Ext. Know), fine-tuning of code SLMs (without SLM Tuning), iterative code
refinement (without Iter Refine) process with the attributable reflection mech-
anism, and program caching (without Caching). By systematically removing or
disabling each component and observing the resulting performance changes, we
measure their impact on key metrics. The baseline is the complete RAIT frame-
work with all components enabled. These ablation studies ensure a thorough
understanding of the framework’s strengths, demonstrating how each compo-
nent contributes to the overall performance in solving specialized engineering
problems. The ablation studies presented in Tables 11, 12, 13, and 14 provide a
comprehensive evaluation of the proposed RAIT framework for enhancing code
SLMs in solving complex chemical and process engineering calculations.

Algorithm Tool Usage Awareness (%) Pass Rate (%) Accuracy (%)

w/o ReAct 67.36 63.71 66.51
w/o Ext. Know 64.51 61.72 56.12
w/o Iter Refine 76.89 70.64 73.74
w/o SLM Tuning 37.72 33.11 34.28
w/o Caching 83.10 78.81 79.49
Proposed Framework 86.89 82.34 84.21

Table 11. The table highlights the performance of ablated variants compared to the
baseline in task planning.

Algorithm Recall (%) NDCG COMP (%)

w/o ReAct 65.09 0.58 61.73
w/o Ext. Know 58.41 0.51 53.61
w/o Iter Refine 72.60 0.66 69.70
w/o SLM Tuning 37.73 0.30 35.67
w/o Caching 79.69 0.71 77.09
Proposed Framework 83.45 0.75 81.23

Table 12. The table shows the performance of ablated variants compared to the base-
line in tool selection.

Algorithm Cons (%) PE (%) EH (%)

w/o ReAct 64.53 64.58 61.35
w/o Ext. Know 58.52 55.17 58.01
w/o Iter Refine 73.53 71.29 69.57
w/o SLM Tuning 36.91 29.48 31.90
w/o Caching 80.24 78.87 77.65
Proposed Framework 84.23 82.45 81.67

Table 13. The table outlines the performance of ablated variants compared to the
baseline in tool calling.

3. EXPERIMENTS 13

Algorithm BLEU ROUGE-L Exact Match (%)

w/o Caching 0.75 0.72 76.58
w/o Iter Refine 0.66 0.65 71.88
w/o ReAct 0.59 0.58 64.58
w/o SLM Tuning 0.37 0.405 35.21
w/o Ext. Know 0.56 0.56 52.78
Proposed Framework 0.78 0.76 80.92

Table 14. The table presents the performance of ablated variants compared to the
baseline in response generation.

The ablation study experimental results clearly demonstrate that the com-
plete RAIT framework (baseline) outperforms the ablated variants across vari-
ous metrics. This highlights the synergistic effect of the framework’s components
and underscores the importance of incorporating all aspects for optimal perfor-
mance in specialized engineering tasks. A comprehensive human evaluation[11]
approach is developed to evaluate the proposed RAIT framework. This frame-
work is designed to augment code SLMs’ capabilities in solving complex chemical
and process engineering calculations. The evaluation involves criteria including
accuracy, relevance, coherence, comprehensiveness, and usability, assessed by
both domain experts and general technical evaluators. Accuracy measures the
correctness of the solutions, relevance assesses the appropriateness of the re-
sponses and selected tools, coherence evaluates the logical flow and readability,
comprehensiveness checks the coverage and detail level, and usability determines
the practicality and ease of integration of the generated code into workflows. De-
tailed guidelines ensure consistent scoring across these criteria, using a 1 (Poor)
to 5 (Excellent) scale for each criterion. Both quantitative scores and qualita-
tive feedback provide in-depth insights into the framework’s performance. The
process involves expert evaluators analyzing results to identify strengths and
weaknesses based on benchmark datasets. The table 15 presents the overall per-
formance metrics for the RAIT framework, showing the mean scores across five
evaluation criteria: accuracy, relevance, coherence, comprehensiveness, and us-
ability. The scores range from 4.00 to 4.22 on a scale of 1 (Poor) to 5 (Excellent).

Criterion Mean Score
Accuracy 4.22
Relevance 4.00
Coherence 4.22
Comprehensiveness 4.00
Usability 4.11

Table 15. The table shows human-evaluation performance metrics for RAIT frame-
work.

We demonstrate the practical application and effectiveness of the RAIT
framework in solving a variety of chemical engineering calculations. Table 16
uses the ideal gas law to calculate CO2 volume. Table 17 demonstrates model-
ing biosynthesis: CO2 utilization and product formation. Table 18 presents the
solution for psychrometric calculations in industrial dehumidification. Table 19
analyzes a single-effect evaporator, calculating heat load and steam economy.

14 Sakhinana, S. S., et al.

Calculate the volume occupied by 88 lb of CO2 at 15◦C and a pressure of
32.2 ft of water.
To calculate the volume of 88 lb of CO2 at 15◦C and a pressure of 32.2 ft of water, use
the Ideal Gas Law: PV = nRT . Convert units: 15◦C to 288.15 K and 32.2 ft of water to
13.94 psi using 1 ft of water = 0.433psi. Calculate moles of CO2 using its molar mass
(44.01 g/mol) and 1 lb = 453.592 g: 88 lb × 453.592 g/lb/44.01 g/mol = 907.18moles.
Convert pressure to atmospheres: 13.94psi = 0.948 atm. Use the ideal gas constant
R = 0.0821L · atm/mol ·K and convert the final volume from liters to cubic feet using
1 ft3 = 28.317L. Solve for the volume: V = nRT

P
= 21, 668L and convert to cubic feet:

21, 668L ×
(

1 ft3
28.317L

)
= 765.8 ft3. Thus, the volume is approximately 765.8 feet3.

Table 16. The framework calculates CO2 volume using the Ideal Gas Law, including
unit conversions and step-by-step problem-solving approach.

NADH (nicotinamide adenine dinucleotide) supplies hydrogen in living
cells for biosynthesis reactions such as CO2 + 4H → CH2O + H2O. If you
saturate 1 L of deaerated water with CO2 gas at 20◦C (the solubility is
1.81 g CO2/L) and add enough NADH to provide 0.057 g of H into a
bioreactor used to imitate the reactions in cells, and obtain 0.7 g of CH2O,
what is the extent of reaction for this reaction? Use the extent of reaction
to determine the number of grams of CO2 left in solution..

To calculate the extent of reaction, we use the amount of CH2O produced. First, we
convert the mass of CH2O to moles: 0.7 g/30.03 g/mol = 0.0233 mol. The stoichio-
metric coefficient for CH2O is 1, so the extent of reaction ξ is 0.0233 mol. The initial
moles of CO2 in 1 L of water are 1.81 g/44.01 g/mol = 0.0411 mol. Using the extent
of reaction, the moles of CO2 left in solution are 0.0411−0.0233 = 0.0178 mol. Finally,
converting back to grams: 0.0178 mol × 44.01 g/mol = 0.784 g. Thus, the number of
grams of CO2 left in solution is 0.784 g.

Table 17. The framework calculates the reaction extent and the remaining CO2 in a
cellular biosynthesis process (stoichiometric analysis of CO2 to CH2O conversion).

A dryer must remove 200 kg of H2O per hour from a certain material. Air
at 22°C and 50% relative humidity enters the dryer and leaves at 72°C and
80% relative humidity. What is the weight (in kilograms) of bone-dry air
used per hour? The barometer reads 103.0 kPa..

We first calculate the humidity ratios(represents the mass of water vapor per unit mass
of dry air) at the inlet and outlet conditions using the formula W = 0.622×Pv

P−Pv
where

Pv is the partial pressure of water vapor, P is is the total pressure and 0.622 is the ratio
of the molecular weight of water vapor to the molecular weight of dry air . For the inlet
conditions (22°C, 50% relative humidity), the saturation pressure is approximately 2.64
kPa, giving Pv,inlet = 1.32 kPa and Winlet ≈ 0.00806 kg H2O/kg dry air. For the outlet
conditions (72°C, 80% relative humidity), the saturation pressure is approximately
31.84 kPa, giving Pv,outlet = 25.47 kPa and Woutlet ≈ 0.204 kg H2O/kg dry air.
Using the mass balance equation ṁH2O = ṁdry air×(Woutlet−Winlet) and solving for
ṁdry air, we find ṁdry air = 200

0.204−0.00806
≈ 1021.33 kg/hr. Woutlet−Winlet represents

the increase in water vapor content per unit mass of dry air as the air passes through
the dryer and ṁdry air is the mass flow rate of the dry air that is used in the drying
process. Thus, the weight of bone-dry air used per hour is approximately 1021.33 kg.

Table 18. The framework calculates the dry air mass flow in an industrial drying
process (air consumption in a controlled humidity drying environment).

4. CONCLUSION 15

A single effect evaporator is to concentrate 20000 kg/h of a solution having
a concentration of 5% salt to a concentration of 20% salt by weight. Steam
is fed to the evaporator at a pressure corresponding to the saturation
temperature of 399 K (126◦C). The evaporator is operating at atmospheric
pressure, and the boiling point rise is 7 K. Calculate the heat load and
steam economy.)

Given data includes the initial flow rate of the solution at 20000 kg/h, an initial
concentration of 5%, and a final concentration of 20%. The steam temperature is 399
K and the boiling point of the solution is 373 K with a boiling point rise of 7 K. First,
we calculate the amount of water to be evaporated using the mass balance for salt:
F · Cf = (F − V) · Cp, rearranging for V gives us V =

20000·(0.05−0.20)
0.20

= 15000
kg/h. Next, we calculate the heat load, using the latent heat of vaporization of water
(approximately 2260 kJ/kg): Q = V ·λ = 15000 · 2260 = 33900000 kJ/h or 33900 kW.
Then, we determine the steam economy, defined as the amount of water evaporated per
unit mass of steam used. Assuming the steam condenses at its saturation temperature
(126◦C or 399 K) with the latent heat of steam also approximately 2260 kJ/kg, the
amount of steam used is S = Q

λs
= 33900000

2260
= 15000 kg/h. The steam economy is

then calculated as SE = V
S

= 15000
15000

= 1.0. In summary, the heat load is 33900 kW
(or 33900000 kJ/h) and the steam economy is 1.0.

Table 19. The framework determines the heat load and steam economy for an atmo-
spheric pressure evaporator.

We introduce ‘Needle in a Haystack’ experiments to evaluate the RAIT
framework using 100 Q&A pairs from benchmark test sets. These experiments
assess the framework’s ability to extract specific, relevant information from large
knowledge bases to solve engineering problems. Key performance metrics include
precision (the fraction of retrieved documents that are relevant to the query),
emphasizing minimization of false positives, and recall (the fraction of all rele-
vant documents that were successfully retrieved), emphasizing minimization of
false negatives. Additional metrics are the F1 score (harmonic mean of precision
and recall), accuracy of generated answers, relevance of retrieved documents,
and coherence of responses. Results in Table 20 show that the RAIT framework
achieves performance comparable to larger models in specialized tasks, demon-
strating its effectiveness in complex information retrieval and problem-solving
scenarios.

Metric GPT-4(O) GPT-4(T) Claude Opus Google Gemini RAIT
Precision 85% 83% 82% 84% 77.45%
Recall 88% 86% 85% 87% 78.04%
F1 Score 86% 84% 83% 85% 79.07%
Accuracy 91% 89% 88% 90% 83.31%
Relevance 87% 85% 84% 86% 79.46%
Coherence 90% 88% 87% 89% 78.80%

Table 20. The table shows results of the “Needle in a Haystack" experiments.

4 Conclusion
In conclusion, the proposed RAIT technique effectively enhances code SLMs for
complex chemical engineering calculations. By combining retrieval-augmented
generation with instruction-tuning, the RAIT technique addresses the limita-
tions of code SLMs in specialized tasks. Experiments demonstrate the effective-
ness of RAIT’s techniques, rivaling larger language models in domain-specific

16 Sakhinana, S. S., et al.

applications. Our work offers a promising direction for developing efficient, spe-
cialized AI tools within the chemical process industry. Future work should focus
on developing more comprehensive and diverse datasets for instruction-tuning,
incorporating a wider range of external tools and APIs, and exploring advanced
techniques for knowledge retrieval and integration. Additionally, investigating
ways to improve the framework’s explainability and interpretability would be
valuable for building trust and facilitating adoption in industrial settings.

References

1. Google, C.: Codegemma: Open code models based on gemma. arXiv preprint
arXiv:2406.11409 (2024)

2. Gou, Z., Shao, Z., Gong, Y., Shen, Y., Yang, Y., Duan, N., Chen, W.: Critic: Large
language models can self-correct with tool-interactive critiquing. arXiv preprint
arXiv:2305.11738 (2023)

3. Lewis, P., et al.: Retrieval-augmented generation for knowledge-intensive nlp tasks.
In: Advances in Neural Information Processing Systems. vol. 33, pp. 9459–9474
(2020)

4. MetaAI: Codellama. https://github.com/meta-llama/codellama (2023)
5. OpenAI: Gpt-4 technical report. arXiv preprint arXiv:2303.08774 (2023)
6. Qu, C., Dai, S., Wei, X., Cai, H., Wang, S., Yin, D., Xu, J., Wen, J.R.: Tool learning

with large language models: A survey. arXiv preprint arXiv:2405.17935 (2024)
7. Shi, Z., Gao, S., Chen, X., Feng, Y., Yan, L., Shi, H., Yin, D., Chen, Z., Verberne,

S., Ren, Z.: Chain of tools: Large language model is an automatic multi-tool learner.
arXiv preprint arXiv:2405.16533 (2024)

8. Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.B., Yu, J., Soricut, R., Schalk-
wyk, J., Dai, A.M., Hauth, A., et al.: Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805 (2023)

9. Team, G., Mesnard, T., Hardin, C., Dadashi, R., Bhupatiraju, S., Pathak, S., Sifre,
L., Rivière, M., Kale, M.S., Love, J., et al.: Gemma: Open models based on gemini
research and technology. arXiv preprint arXiv:2403.08295 (2024)

10. Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bash-
lykov, N., Batra, P., Bhargava, S., Bhosale, S., et al.: Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023)

11. Xiao, Z., Deng, W.H., Lam, M.S., Eslami, M., Kim, J., Lee, M., Liao, Q.V.: Human-
centered evaluation and auditing of language models. In: Extended Abstracts of
the CHI Conference on Human Factors in Computing Systems. pp. 1–6 (2024)

12. Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Syn-
ergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629
(2022)

13. Zhang, B., Zhou, K., Wei, X., Zhao, X., Sha, J., Wang, S., Wen, J.R.: Evaluating
and improving tool-augmented computation-intensive math reasoning. Advances
in Neural Information Processing Systems 36 (2024)

14. Zhang, T., Patil, S.G., Jain, N., Shen, S., Zaharia, M., Stoica, I., Gonzalez,
J.E.: Raft: Adapting language model to domain specific rag. arXiv preprint
arXiv:2403.10131 (2024)

