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Abstract. The reliable detection of faults and anomalies in chemical
processes is vital for safe operation and high product quality in chemical
industries. To date, human experts must evaluate process data to ful-
fill this task, so automatizing is highly desirable. Over the past decade,
many anomaly detection (AD) methods based on deep machine learning
have appeared. These methods are usually developed, assessed, and com-
pared using artificial data from the Tennessee-Eastman Process (TEP).
This work, for the first time, presents findings on deep learning-based
AD methods applied to experimental process data. The results revealed
an excellent performance of the AD methods on the synthetic TEP data
while struggling with experimental data, particularly for dynamic pro-
cesses. These findings underscore the need for new, tailored approaches
for AD detection to discriminate abnormal from normal process behav-
ior.
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1 Introduction

Anomalies in chemical plants can have disastrous consequences for humans and
the environment. Therefore, reliable methods for detecting faults and anomalies
in the process as early as possible are paramount in chemical industries to ensure
safety and product quality. While anomaly detection (AD) in chemical processes
to date mainly relies on human experts, the machine-learning (ML) commu-
nity has developed powerful AD methods for time-series data. Advancements in
time-series AD have prominently featured the evolution of unsupervised deep
learning methods that operate independently without needing labeled anomaly
instances [14]. These unsupervised deep learning models are trained on patterns
representing standard behavior within time-series data, allowing them to inter-
nalize fundamental structures and representations of regular sequences. Conse-
quently, anomalies reflecting deviations from the learned norms are effectively
detected within the data.
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However, although these deep AD methods are generally suited for the time-
series data from chemical processes, e.g., the sensor data continuously collected
in a chemical plant, they have yet to find their way into chemical industries. The
main obstacle, thereby, is the lack of available experimental process data for
training the AD methods since chemical industries, where most of the processes
are run, do not share their data. Specifically, the only data set for training and
testing AD methods for chemical processes is the so-called Tennessee Eastman
Process (TEP) data set [2], which has, consequently, been the benchmark dataset
for time-series AD, including previous works on AD in chemical processes [9].
However, the TEP is not a real but hypothetical process. Hence, the TEP data
set contains no experimental but only simulated data that does not cover the full
spectrum of possible operating scenarios or abnormalities encountered in real-
world industrial settings. Consequently, the results of AD methods on the TEP
data do not allow conclusions on their applicability to actual chemical processes.

In the present work, we, for the first time, introduce deep AD methods in real
chemical processes, focusing on distillation processes as the prime example. For
this purpose, we generate suitable, large data sets with a continuous distillation
plant, as it is part of many large-scale industrial production processes, and with
a batch distillation plant, which is more flexible and, therefore, established for
small-scale production ventures. We performed anomaly-free experiments and
experiments with various enforced anomalies with both plants. State-of-the-art
AD methods from the ML literature were systematically trained and tested on
the experimental data, and the results were compared to the synthetic TEP data
set [13].

2 Methods

2.1 Experimental Data Generation

A continuous distillation mini-plant with a capacity of five t/y was utilized to
generate stationary process data. Multivariate time-series data from 17 sensors
were collected. The distillation column has one pressure controller, two flow
controllers, two level controllers, and two temperature controllers. Experiments
lasting 30 days were carried out with pure water.

A laboratory-sized plant with a two-litre glass still and a glass column with
three sections was used for the batch distillation experiments. Multivariate time-
series data from 20 sensors were collected. The batch distillation column has a
pressure controller, six temperature controllers, and one level controller. The
collected dynamic process data span 25 distillation experiments with ternary
mixtures of n-butanol, 2-propanol, and water as feeds.

Experimental data with and without anomalies were generated with both
plants; all data were labeled accordingly. The anomalies were introduced in a
clearly defined manner. The anomaly’s location was defined as either a control
loop, sensor, or component of the plant. For a short time window, a fault, e.g.,
leakage or sealing failure, or a control setting deviating from normal behavior
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in the respective experiment was introduced into the process. Literature on the
most common process anomalies from real-life processes was reviewed to sup-
port the optimal selection of recreated anomalies [7]. The faults included in the
dataset are listed in 2.2. The labeled data were used to train, test, and system-
atically compare different AD methods from the literature.

2.2 Anomaly Detection

Using the synthetic TEP data, 27 unsupervised deep AD methods, taken from
contemporary literature for time-series AD, were tested and compared [5]. The
tested methods include reconstruction-based methods [6], forecasting-based meth-
ods [10], generative methods [16], and hybrid approaches [15,18]. Seven of the
AD methods were randomly chosen and also applied and tested using the experi-
mental process data from the continuous and batch plant generated in this work.
All methods were trained equally on a training data set of five runs with about
1000 time steps each for the continuous and batch distillation data. The periods
of the plant’s start-up and cool-down phases were not considered, respectively.
All training data sets were normalized and anomaly-free. The hyperparameters
were not fixed but optimized with cross-validation to adjust them to this new
data set for a better comparison. For this cross-validation, we split the training
set into folds of equal size. The training excluded one of these folds, on which we
validated the trained model. This process was repeated by switching the folds to
have each fold used once for validation. Afterward, all optimal trained models
were evaluated on a test data set containing ten other runs than the training set
with 1,000-11,000 time steps each. These time-series data contain anomalies of
varying type and effect duration. As types of anomalies, faults in the supplied
heat, internal pressure, or leaking were considered, which can also be found in
the TEP dataset [13]. The types of anomalies are thereby distributed uniformly
in the test cases.

In all cases, we use the overall F1-score and the area under the precision-
recall curve (AUPRC) as anomaly scores [11] for each time step for evaluating
and comparing the AD methods, with an anomaly being detected if the score
surpasses a threshold, that is set as a hyperparameter for the AD methods. These
scores were used to rank the AD methods according to their average performance
in all three settings.

3 Results and Discussion

All studied 27 AD methods perform very well on the synthetic TEP data set
with F1-scores above 0.9 and AUPRC above 0.96 throughout, cf. our paper [5]
for details.

Table 1 summarizes the results of seven of these AD methods on the experi-
mental process data generated in this work and compares them to those for the
TEP data. The ranking of the AD methods on the different data sets is based
on the AUPRC score. Among the experimental data, the performance of the
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Method Method Type AUPRC Ranking
TEP continuous batch TEP continuous batch

DONUT[17] Generative VAE based 0.9829 0.4111 0.5761 1 4 2
GMM_VAE[4] Generative VAE based 0.9815 0.3353 0.5164 2 6 4

USAD[1] Reconstruction based 0.9779 0.3583 0.5974 3 5 1
LSTM_VAE_GAN[12] Generative VAE based 0.9735 0.6445 0.4900 4 3 5

TADGAN[3] Generative GAN based 0.9690 0.6723 0.3545 5 1 7
MADGAN[8] Generative GAN based 0.9621 0.3296 0.5282 6 7 3
THOC[15] Hybrid 0.9618 0.6702 0.4330 7 2 6

Table 1. Results of seven AD methods tested on synthetic TEP data and experimental
process data using a continuous and a batch distillation plant.

AD methods on the dynamic data is lower than for the stationary data. This
finding can be explained by the nature of dynamic data, where even the normal
operating point is object to transitions at all times. Hence, detecting faults in
the dynamic data is a much more challenging task than in stationary data from
a continuous plant.

By comparing the results for the experimental data with those for the TEP
data, it is particularly noticeable that the AUPRC scores are significantly lower
for the experimental data, indicating much poorer performance regarding cor-
rectly identifying anomalies from actual process data. This result is observed for
the stationary data from the continuous distillation plant and the dynamic data
from the batch distillation plant. Noteworthy, even the least effective method for
the TEP data set, which is THOC [15], exhibits a thirty percent higher AUPRC
score than the best-performing methods on the experimental data sets. Possible
explanations for the significant differences in performance with the different data
sets are that the available experimental data sets for training the AD methods
are too small and that the nature of the experimentally introduced anomalies is
more complex than that of the synthetic anomalies. Furthermore, AD methods
have so far only been developed and tested on synthetic data, so they are likely
tailored for synthetic scenarios rather than real-world applications.

4 Conclusion

Deep learning-based AD techniques perform excellently on synthetic TEP data
but largely fail to detect abnormal behavior in experimental process data sets
correctly. We conclude that developing, testing, and comparing the performance
of AD methods on synthetic process data does not lead to suitable methods for
AD in real process plants. The outcomes of our research underscore the press-
ing need for the development of new, tailored approaches for AD in real-world
applications within the chemical industries. To achieve this, more experimental
process data, including normal operation and data sets with anomalies, are re-
quired to develop suitable AD methods. These data sets must include dedicated
experiments with anomalies not easily detectable by a human expert to maxi-
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mize the impact of deep AD methods. The dataset used in this work will also
be made available in future publications to support this.
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