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Abstract. Predicting the physico-chemical properties of pure substances
and mixtures is a central task in thermodynamics. Established predic-
tion methods range from fully physics-based ab-initio calculations, over
descriptor-based methods, to representation-learning methods, which, in
extreme cases, may completely ignore molecular structure and extrapo-
late only from existing experimental data (e.g., matrix completion meth-
ods). In this work, we propose a general method for combining molecular
descriptors with representation learning using the so-called expectation
maximization algorithm from the probabilistic machine-learning liter-
ature, which uses uncertainty estimates to trade off between the two
approaches. The proposed hybrid model uses graph neural networks to
exploit chemical structure information, but it detects and corrects un-
reliable structure-based predictions by more specialized representation-
learning based predictions. Our method significantly improves predictive
accuracy over the current state of the art in the example problem of pre-
dicting activity coefficients in binary mixtures, showcasing its potential
to advance the prediction of physico-chemical properties in general.

This document is an extended abstract to Ref. 22 by the same authors,
available at: https://arxiv.org/abs/2406.08075
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1 Introduction

Information on physico-chemical properties is crucial for the design and opti-
mization of processes in many industries, including chemistry, pharmacy, and
biotechnology. As an important example, activity coefficients of the components
in a mixture, which describe the deviation from the ideal mixture, are the basis
for modeling any phase and reaction equilibria. As measuring such thermody-
namic properties for all relevant mixtures would be infeasible [14], prediction
methods for thermodynamic properties of mixtures are paramount.

https://arxiv.org/abs/2406.08075
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Recently, research on such prediction methods has split into two branches:
(a) descriptor-based methods, which correlate information on the molecules to
be modeled (e.g., molecular weight, surface area, or composition in terms of
structural groups) with properties of interest; and (b) so-called matrix comple-
tion methods (MCMs) [11,13,10,9,4] from the machine-learning literature, which
ignore chemical structure and fit individual abstract representation vectors for
each mixture component that appears in a set of available experimental data.

In statistics parlance, descriptor-based models are called “parametric” where-
as MCMs are called “nonparametric in the components” (despite having many
parameters, but each parameter in a nonparametric model is only relevant to
a single component and can thus be seen as a parameter of the component
rather than a parameter of the model). Nonparametric models are more flex-
ible, and, empirically, MCMs were shown to predict activity coefficients more
accurately [11,13,12] than the (parametric) group-contribution method UNI-
FAC [6,21,3], which is still considered the gold standard for property predic-
tion in many (industrial) fields [7,15]. But nonparametric models cannot exploit
structural similarities across components nor extrapolate to new components.

In our work [22], we propose a new method for predicting activity coefficients
(and thermodynamic properties in general) in binary mixtures that combines
the strengths of both the parametric (descriptor-based) and the nonparametric
(representation-based) approach, while avoiding their respective weaknesses. We
jointly fit probabilistic variants of both model types using the so-called varia-
tional expectation maximization (variational EM) [5,1] algorithm, which finds
a compromise based on the two models’ uncertainty estimates. Our evaluation
shows that this uncertainty-based trade-off indeed improves predictive accuracy.

2 Method

As an example prediction problem of physico-chemical properties, we consider
activity coefficients in binary mixtures at infinite dilution at 298.15 (±1) K (our
method can be extended to arbitrary concentrations and temperatures by fol-
lowing [12]). We start from a dataset of 4094 experimentally measured activity
coefficients γ∞

i,j between M = 240 distinct solutes i and N = 250 distinct sol-
vents j taken from the Dortmund Data Bank (DDB) [19]. Our goal is to predict
activity coefficients for mixtures where no experimental data is available, includ-
ing mixtures that involve at least one component that does not appear in the
experimental data (referred to as “out-of-domain prediction” in the following).

Our proposed prediction method uses a probabilistic model that combines
a parametric with a nonparametric part. The parametric part uses graph neu-
ral networks (GNNs) [8,20,2] that map the molecular graph structures of the
solute i and solvent j, respectively, and output (so-called conditional prior dis-
tributions over) representation vectors ui, vj ∈ RK (the dimension K is a model-
ing choice). The nonparametric model part is a probabilistic matrix completion
method (MCM) [11], which learns (a so-called variational distribution over) ui

and vj for each solute and solvent, respectively, that appears in the data.
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Crucially, we train both parts jointly with the so-called variational expecta-
tion maximization (variational EM) [5,1] algorithm. Variational EM is a so-called
empirical Bayes method, i.e., it is similar to Bayesian inference [18] with the ex-
ception that not only the posterior distribution but also the prior distribution is
(albeit to a lesser degree) informed by the data. Our main paper [22] discusses
variational EM in detail. In this extended abstract, we focus on showing how
easily variational EM can be implemented in practice and how effective it is
empirically for the prediction of thermodynamic quantities. The combination of
both models parts defines a latent variable model with the joint distribution

pθ(u,v, lnγ
∞ | r, s) =

( M∏
i=1

pθ(ui|ri)
)( N∏

j=1

pθ(vj |sj)
)(∏
(i,j)∈D

p(ln γ∞
i,j |ui, vj)

)
. (1)

Here, boldface symbols u, v, r, s, and γ∞ on the left-hand side denote the col-
lection of all representation vectors ui and vj , chemical structures ri and sj ,
and activity coefficients γ∞

i,j in the experimental data D. On the right-hand side,
pθ(ui|ri) and pθ(vj |sj) are the conditional prior distributions that are parame-
terized by the GNNs, and p(ln γ∞

i,j |ui, vj) is a simple (fixed) likelihood function.
Variational EM is an approximate variant of EM [5], which jointly learns

model parameters (i.e., neural network weights) θ that maximize the marginal
likelihood pθ(lnγ

∞ | r, s) =
∫∫

pθ(u,v, lnγ
∞ | r, s) dudv of the data while also

finding the posterior pθ(u,v | r, s, lnγ∞) = pθ(u,v, lnγ
∞ | r, s) / pθ(lnγ∞ | r, s).

Variational EM makes this task computationally feasible by introducing so-called
variational distributions qϕ(ui) and qϕ(vj), which will end up approximating the
(marginal) posterior distributions, and which we choose to be Gaussian distri-
butions with diagonal covariance matrices, where the free parameters ϕ are the
means and variances. Instead of maximizing the marginal likelihood, variational
EM then maximizes a lower bound to it called the evidence lower bound (ELBO),

ELBO(θ, ϕ) =
∑

(i,j)∈D

Eqϕ(ui) qϕ(vj)

[
ln p(ln γ∞

i,j |ui, vj)
]

(2)

−
M∑
i=1

DKL

(
qϕ(ui)

∥∥ pθ(ui | ri)
)
−

N∑
j=1

DKL

(
qϕ(vj)

∥∥ pθ(vj | sj)).
Here, E[ · ] denotes the expectation value and DKL the Kullback-Leibler (KL)
divergence [16,18], which quantifies how much the variational distributions differ
from the conditional priors, and which can be calculated analytically for normal
distributions [18]. Our main paper [22] discusses the ELBO in detail. In this
extended abstract, we only highlight that (i) maximizing the ELBO over both
θ and ϕ fits the variational distributions qϕ to the data in a nonparametric way
that is, however, regularized by the (parametric) GNNs, where the regularization
is stronger in cases where the GNNs estimate their own uncertainty as low; and
(ii) the ELBO can be easily maximized with standard stochastic gradient descent
using automatic differentiation, i.e., with the same techniques that are usually
used for neural network training (see explicit pseudocode in our main paper [22]).
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3 Evaluation Setup and Results

Table 1. Comparison of the proposed GNN
MCM with the fully parametric model from [17].

model MAE MSE
GNN MCM 0.1542±0.0046 0.0905±0.0071

Medina et al. [17] 0.1973±0.0067 0.1196±0.0074

We evaluate our proposed meth-
od “GNN MCM” and a simpler
variant, “MoFo MCM”, which re-
places the GNNs with neural
networks that operate on the
molecular formula. As baselines,
we compare to modified UNIFAC (Dortmund) [21,3] (called “UNIFAC” below), a
fully nonparametric MCM [11], and a fully parametric GNN-based method [17].
For training setup, detailed results, and further details see our full paper [22].

We evaluate in-domain predictions (both solute and solvent appear in the
experimental data) using qϕ and out-of-domain predictions (at least one of so-
lute or solvent is new) using the conditional priors. We further investigate two
ablation studies: (1) using only the conditional priors of the same trained models
for in-domain predictions; and (2) removing uncertainty estimates and training
by simple maximum likelihood estimation (MLE) rather than variational EM.
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Fig. 1. Prediction errors of our mod-
els, baselines, and ablations. The proposed
GNN MCM has best predictive accuracy for
both in- & out-of-domain predictions.

Figure 1 and Table 1 summarize
our results by showing the mean ab-
solute error (MAE) and mean squared
error (MSE) of the predicted logarith-
mic activity coefficients of all evalu-
ated models. Light hatched bars in
Figure 1 represent models trained and
evaluated only on data points that
can be modeled by UNIFAC. Compar-
isons to [17] are shown in Table 1 us-
ing the same dataset as in [17].

The proposed GNN MCM makes
more accurate predictions than all
considered baselines, both in terms
of MAE and MSE, and for both
in-domain and out-of-domain predic-
tions. Comparing the last two rows of
Figure 1 (ablation 1) to rows four and
five shows that the nonparametric fits
are indeed useful where they are avail-
able (i.e., for in-domain predictions). Ablation 2 shows that variational EM sig-
nificantly improves in-domain predictions over MLE-training, but the picture is
less clear for out-of-domain predictions. See full paper [22] for further discussion.

Conclusions. We propose a generic method for predicting physico-chemical
properties that uses variational EM to combine the generalization capability of
structure-based methods with the flexibility of nonparametric representation-
learning. Our method significantly improves upon the state of the art in the
example problem of predicting activity coefficients in binary mixtures, and it
can easily be applied to similar physico-chemical prediction problems as well.
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