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Abstract. Recent advancements in Graph Neural Networks (GNNs)
have demonstrated signi�cant potential in the realm of chemistry, o�er-
ing robust performance for various predictive tasks. However, achieving
high accuracy is only part of the challenge; understanding the mecha-
nisms driving these models is equally critical for their reliable application.
Although numerous general-purpose GNN explainers are available, lever-
aging domain-speci�c knowledge can signi�cantly improve the design of
explanations for chemical applications. In our research, we introduced
an explainability framework grounded in the well-established principle
of group contributions. Using this approach, we were able to explain the
model's prediction without sacri�cing accuracy. Our �ndings suggest that
di�erent GNN models may learn distinct patterns from the molecules.
Moreover, by implementing a customized loss function, we successfully
guided the models' learning process to align with the expected group
contributions, all while preserving overall model performance.

Keywords: Machine Learning · Graph Neural Networks (GNNs) · chem-
ical properties regression · explainable AI (XAI) · group contributions

1 Introduction

The ability to accurately predict chemical properties has been a long-standing
goal in both academic research and industrial applications. In recent years, arti�-
cial intelligence (AI) and machine learning (ML) have shown signi�cant promise
in the �eld of chemistry [10,3]. Among these advancements, Graph Neural Net-
works (GNNs) have emerged with tremendous potential in this �eld, as they
naturally align with the intrinsic graph structure of a molecule. Numerous GNN-
based models have achieved state-of-the-art accuracy in chemical predictions [6].

However, as models become more accurate, other important debates have
emerged. Critics argue that ML models often capture mere correlations in data
rather than true chemical principles. Given the complexity and non-linear na-
ture of these models, their internal mechanisms can be di�cult for humans to
interpret. Therefore, it is not only important to focus on model accuracy and
performance but also to understand how these models function internally.
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In this context, Explainable Arti�cial Intelligence (XAI) is of paramount im-
portance. XAI focuses on developing techniques that clarify the functioning of
models and explain their predictions. In chemistry, XAI serves three key roles.
First, it builds trust among skeptical users by providing transparency. Second, by
revealing the inner workings of models, it allows experts to leverage their chem-
ical knowledge to enhance and re�ne these models. Third, it supports informed
decision-making and helps validate the results derived from model predictions.
Although various XAI methods have been developed to explain GNN models
[22,13,11], many are too general and require customization for speci�c model
applications. A critical discussion centers on the potential bene�ts of developing
explainers that utilize domain-speci�c knowledge to craft more relevant expla-
nations. Additionally, this can help establish a more accurate ground truth for
what an explanation should entail. Some researchers have begun to explore this
avenue by developing explainers that incorporate chemical expertise [20,21,1].

In our study, we revisited the established concept of group contribution (GC)
methods [8] in chemistry to elucidate GNN models. GC methods decompose
molecules into groups and calculate the properties of the molecule by summing
the contributions from each group. Typically, these contributions are estimated
using linear regression, a simple and transparent approach. Since these groups
represent parts of the molecule familiar to chemists, they are intuitively under-
stood within the chemical community. By modifying the aggregation approach
of GNN models, we were able to extract group contributions alongside the pre-
dictions. Our goal was to implement these changes with minimal alterations to
the original models, maintaining their accuracy while simultaneously providing
interpretability. Figure 1 illustrates our approach, showing how these modi�ca-
tions were integrated into the existing model framework.

2 Related work

Rasmussen et al. [16] employed perturbation methods to determine the contri-
butions of di�erent molecular fragments to the predicted octanol-water partition
coe�cient (LogP). They benchmarked the contributions derived from Crippen's
LogP model, a type of GC method, against those obtained from ML models.
Inspired by their approach, we expanded this methodology to other chemical
properties, such as the enthalpy of formation and the HOMO-LUMO gap.

Chen et al. [7] employed the GC concept to develop their model using a
GNN architecture based on 2D molecular graphs. They integrated GC principles
and benchmarks to improve model accuracy. While their study concentrated on
creating a new model based on 2D graphs, our focus has been on providing
explanations for state-of-the-art models that leverage 3D molecular structures.

Wu et al. [21] adopted a masking strategy to evaluate the contributions of
various molecular fragments, including BRICS substructures, Murcko substruc-
tures, and functional groups. These masks helped identify substructures that
signi�cantly a�ect model predictions. Although masking is e�ective for deter-
mining the importance of di�erent graph nodes, our method takes a di�erent
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Fig. 1. Schematic of a classical GNN approach (A) and our approach (B). In both
approaches, a molecule is represented using a graph where each node is associated
with a vector. During the message-passing process, the vectors are updated based
on the neighborhood information. In the classical GNN approach (A), all vectors are
aggregated after the message-passing process. In our approach (B), the vectors are
aggregated based on the information about the groups.

approach by avoiding input modi�cations. Instead, our aim was to derive expla-
nations directly within the prediction process itself.

Aouichaoui et al. [4] have developed a model that learns embeddings at three
levels: node, group, and junction tree. They combined these embeddings and used
a multilayer perceptron for predictions. Their junction tree level allowed them
to explain predictions and determine the in�uence of di�erent groups. Rather
than employing a multi-level approach, we directly use readouts to obtain scalar
values for each group and sum them to produce the �nal prediction.

Walter et al. [19] used an attention-based approach to identify which molec-
ular parts contribute the most to a given prediction. Their work focused on
�ngerprint-based models for classi�cation tasks. In contrast, our research cen-
ters on GNN models for regression tasks, emphasizing distinct methodological
and application focuses.

Our work introduces a novel application of GC methods to explain existing
GNNs. The key innovation lies in modifying the GNN's aggregation mechanism
to enhance interpretability without sacri�cing model performance. This is par-
ticularly important, as traditional XAI tools often compromise model accuracy
by employing simpler surrogate models or decomposing inputs to evaluate com-
ponent in�uences. In our approach, we retained the original message-passing and
readout layers of the models, making changes only to the aggregation logic.
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3 Proposed approach

3.1 Group Aggregation

GNNs typically consist of message-passing layers that propagate information
between nodes, followed by a readout phase to produce a �nal output. Before
the readout, the embeddings of the nodes in the graph are aggregated. Typically,
they are either summed or averaged all together altogether.

In our approach, however, we modify this process to aggregate embeddings
based on prede�ned group information. Each group is de�ned by a central atom
and its neighboring atoms. During aggregation, we sum the embeddings of all
neighboring atoms with the embeddings of the central atom within each group.

The resulting vector for each group is then passed to the readout layer. This
process generates a scalar value for each group, representing its contribution to
the overall prediction. The �nal molecular property prediction is achieved by
summing these scalar group contributions (see Fig. 1).

3.2 Group de�nition

The de�nition of groups is a critical step in our approach, as it determines how
node embeddings will be aggregated. Inspired by Benson's work [5], we de�ned a
group as a central atom and its adjacent neighbors, with a minimum requirement
of two neighboring atoms.

3.3 Explanations

After obtaining the contributions of each group, we used heatmaps to visualize
these contributions across the molecular structure. Each heatmap highlights the
relative importance of di�erent groups.

4 Experiments

4.1 Data

We utilized the QM9 dataset [15] with a focus on predicting the enthalpy of
formation (∆Hf ) and the HOMO-LUMO gap (∆ϵ). The ∆Hf values were cor-
rected using reference atomic energies as already done by others [2]. The targets
were scaled using the mean absolute deviation (MAD) and the median follow-
ing [17,14]. Data partitioning was performed based on Bemis-Murcko sca�olds,
resulting in 70% of the data allocated for training, 15% for validation, and 15%
for testing.
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4.2 GNN Models

We employed the SchNet [18] and EGNN [17] models, which leverage 3D molec-
ular information, maintain desirable properties such as equivariance, and have
been e�ectively used in various material science applications. Although newer
models are available, our objective was to utilize well-established methods to
demonstrate proof-of-concept. We anticipate that the observed results would
extend to more recent models as well. Given our usage of the message-passing
and readout layers from other models, we expect scalability and computational
costs to be associated with these operations. The aggregation step is straight-
forward and e�cient, as adjacency information for the groups is precomputed.
We employed the original hyperparameters from the respective studies. For each
model type, we created two variants: the original and the groups variant. In the
groups variant, embeddings were grouped according to Benson groups, and a
scalar value was derived for each group, as previously explained. In the original
variant, the embeddings were aggregated using a summation operation.

4.3 Regression Models

We also performed linear regression using the ridge method [9] with the group
counts within each molecule serving as features. The bias of the ridge models was
set to zero. In this case, the group contributions were considered as the coe�-
cients of the ridge regression. A 5-fold cross-validation was applied to determine
the optimal hyperparameter for the ridge regression.

4.4 Standard Training and Testing

The models were trained using the Adam optimizer, incorporating a cosine an-
nealing learning rate scheduler and a weight decay of 1 × 10−16. The initial
learning rate was set at 5×10−4. The mean absolute error (MAE) was employed
as the loss function for both training and validation phases. Models were vali-
dated at 20-epoch intervals. We implemented a checkpointing mechanism with
a patience of 10 validation cycles, ceasing training if the validation loss did not
improve over 10 validations. The maximum number of epochs was set at 1000.

4.5 Custom Loss

In addition to the standard training procedure, we also trained the models using
a custom loss function composed of two elements: the di�erence between the pre-
diction and the target value, and the cumulative di�erences between the model's
group contributions and reference group contributions (see Equation 1 below).
These elements were weighted by an α parameter. The group contribution values
from the ridge regression models served as the reference.

Losscustom = (1− α)MAEpred. + αMAEgroups (1)
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Training began with an α value of 0.5, which was linearly decreased to 0. Due
to the dynamic nature of α, checkpointing was not used during this phase, and
models were trained for 1000 epochs without interruption. The purpose of this
approach was to initially bias the model with group contribution information
and gradually shift focus solely to minimizing prediction error.

4.6 XAI Plots

We used the RDKit cheminformatics toolkit [12] to generate molecular drawings
overlaid with heatmaps created using the group contributions attributed to the
central atom of each group.

4.7 Code Availability

The code developed for this study is available at https://github.com/g-cathoud/
GNNXGroup

5 Results and discussion

5.1 Accuracy of the Models

The linear regression models performed reasonably well for such a simple model,
particularly for predicting∆Hf (R

2 = 0.915). However, their performance for∆ϵ
was comparatively lower (R2 = 0.815), likely due to the non-local distribution of
the HOMO and LUMO orbitals in the molecules in�uencing ∆ϵ. The grouping
method divides molecules into segments, favoring the prediction of localized
properties like ∆Hf .

GNN models signi�cantly improved accuracy compared to the regression
models. For ∆Hf , GNN models achieved an R2 value of 0.998 across all cases.
For ∆ϵ, GNN models also outperformed the ridge regression models, although
predicting ∆ϵ remained more challenging than ∆Hf , with R2 values ranging
from 0.917 to 0.934.

When comparing our results for the original GNN models with those reported
by the original authors, we found that our MAE was twice as high for ∆Hf and
four times as high for ∆ϵ. This discrepancy was expected, as we used a sca�old
split, while the original authors employed a random split. In our experiments,
SchNet slightly outperformed EGNN for both ∆Hf and ∆ϵ.

Interestingly, the di�erent aggregation schemes did not impact the overall
model accuracy for SchNet and EGNN. The R2 values remained nearly constant,
and the MAE varied by a maximum of only 7 meV for ∆Hf and 13 meV for
∆ϵ. Notably, for ∆ϵ, the grouping method yielded better results. Typically, XAI
techniques tend to reduce model accuracy, but our approach o�ers the signi�cant
advantage of enhancing interpretability without sacri�cing model performance.

https://github.com/g-cathoud/GNNXGroup
https://github.com/g-cathoud/GNNXGroup
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Table 1. Accuracy metrics obtained with the test set for the di�erent models (O -
original model, G - model with group aggregation)

∆Hf RMSE / meV (↓) MAE / meV (↓) R2 (↑)

R.R. 303 235 0.915
EGNN (O) 43 27 0.998
EGNN (G) 50 30 0.998
SchNet (O) 41 22 0.998
SchNet (G) 46 26 0.998

∆ϵ RMSE / meV (↓) MAE / meV (↓) R2 (↑)

R.R. 514 401 0.815
EGNN (O) 348 222 0.917
EGNN (G) 343 214 0.919
SchNet (O) 337 211 0.922
SchNet (G) 311 198 0.934

5.2 Explainability of the models

Using the group contributions from the di�erent models, we were able to gen-
erate XAI plots (see examples in Fig. 2). A general visual analysis revealed a
strong alignment in the group contributions between the ridge regression and
SchNet for both target properties. In contrast, the agreement between the group
contributions from EGNN and ridge regression was notably lower, particularly
for ∆Hf .

We also computed the cosine similarity and MAE between the regression
and GNN model contributions, as detailed in Table 2. The results align with the
insights gained from the visual inspection, as the contributions from the ridge
regression and SchNet models exhibited high agreement, with an average cosine
similarity of 0.70 for ∆Hf and 0.62 for ∆ϵ and an average MAE of 0.25 for ∆Hf

and 0.27 for ∆ϵ.
In contrast, the EGNN models showed much lower cosine similarity values,

especially for ∆Hf . This suggests that although EGNN and SchNet achieve sim-
ilar predictive accuracy, their underlying learned patterns are di�erent. The high
agreement between SchNet and the ridge regression model, which is based on
Benson's approach, indicates that these models share some chemical insights.
However, EGNN seems to be capturing di�erent features, inviting further inves-
tigation into the unique aspects identi�ed by EGNN and their potential contri-
butions to chemical understanding.

5.3 Custom loss

Regarding the models trained with the custom loss function, the results indi-
cate that the accuracy of the EGNN in predicting ∆Hf decreased. This result
underscores the notion that the EGNN may be learning di�erent patterns in
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Table 2. Average cosine similarity (CS) and mean absolute error (MAE) between the
contributions of the ridge regression (R.R.) models and the GNN models with group
aggregation. Results obtained using the standard training procedure.

Target Model comparison µCS (↑) µMAE / ev (↓)

Regular loss

∆Hf
EGNN vs. R.R. -0.17 0.32
SchNet vs. R.R. 0.70 0.25

∆ϵ
EGNN vs. R.R. 0.51 0.23
SchNet vs. R.R. 0.62 0.27

this context and does not align with the learning process of the ridge regression
model. Consequently, e�orts to align the learning with the reference contribu-
tions resulted in a decline in the model's performance. This is important because,
although the ridge regression method is based on an established methodology
from the literature, the EGNN appears to learn distinct and potentially novel
patterns.

In terms of the accuracy of the other models, comparisons between Tables
1 and 3 show that there was minimal variation. Notably, the SchNet model
demonstrated a slight improvement in accuracy when using the custom loss.
This con�rms that employing the custom loss function does not impair the ac-
curacy of the models. Instead, it suggests that the custom loss can be bene�cial,
particularly for models like SchNet.

Table 3. Accuracy metrics obtained with the test set for the di�erent models with
group aggregation and using the custom loss.

∆Hf RMSE / meV (↓) MAE / meV (↓) R2 (↑)

EGNN 101 38 0.990
SchNet 41 20 0.998

∆ϵ RMSE / meV (↓) MAE / meV (↓) R2 (↑)

EGNN 343 222 0.919
SchNet 308 199 0.935

When considering the alignment between the group contributions from the
GNN models and the reference group contributions, the use of the custom loss
function resulted in signi�cantly greater agreement. The averages of the align-
ment metrics are presented in Table 4.

Examining the values in Table 4, it is evident that the agreement is much
higher, with the values for the average cosine similarity reaching as high as 0.99
for ∆Hf and 0.96 for ∆ϵ. Yet, the high average MAE regarding EGNN when
predicting ∆Hf further underscores the model's resistance to aligning with the
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Table 4. Average cosine similarity (CS) and mean absolute error (MAE) between the
contributions of the ridge regression (R.R.) models and the GNN models with group
aggregation. These results were obtained by training the models using a custom loss
function.

Target Model comparison µCS (↑) µMAE / ev (↓)

∆Hf
EGNN vs. R.R. 0.99 0.52
SchNet vs. R.R. 0.99 0.04

∆ϵ
EGNN vs. R.R. 0.94 0.07
SchNet vs. R.R. 0.96 0.07

group contributions derived from ridge regression. In other cases, the average
MAE remained very low.

Reviewing the examples in Fig. 3, it is clear that the agreement is signi�cantly
higher across models. These results are particularly signi�cant because, while
the models demonstrated similar accuracy for most cases, the incorporation of
the custom loss function enabled the alignment of the model's learning with
established chemical intuition.

6 Conclusions

Our study demonstrates that altering the aggregation mechanism in GNN mod-
els can signi�cantly improve their explainability without sacri�cing performance.
This advancement is crucial for providing interpretable predictions while main-
taining high accuracy. Our �ndings also indicate a strong alignment in group
contributions between the ridge regression and SchNet models, suggesting that
these models capture common fundamental chemical principles. In contrast, the
EGNN model's group contributions diverge considerably from those of the ridge
regression, indicating that EGNN may be identifying di�erent patterns. This
discrepancy invites further exploration into the origins of these di�erences and
the potential insights they might o�er.

Moreover, the use of a custom loss function demonstrates that it is feasible
to align a model's learning process with speci�c chemical intuitions, potentially
enhancing or at least maintaining model accuracy. The application of group
contributions is particularly advantageous as it allows for the integration of es-
tablished values from the literature, thereby improving the model's alignment
with recognized chemical knowledge.

In summary, this study sets the stage for developing more interpretable
GNN models in the �eld of chemistry. The ability to align model learning
with established chemical principles while maintaining accuracy underscores the
signi�cant potential of combining advanced machine learning techniques with
domain-speci�c knowledge. Future research should explore additional models
and datasets to further validate and extend these �ndings.
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Fig. 2. Example of heatmaps obtained with the group contributions for the ridge re-
gression and the GNN models with group aggregation. In this case, Cos sim stands
for cosine similarity. Green colors represent positive values, while pink colors represent
negative values.
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Fig. 3. Example of heatmaps obtained with the group contributions for the ridge re-
gression and the GNN models with group aggregation. Results obtained with custom
loss. Again, Cos sim stands for cosine similarity. Green colors represent positive values,
while pink colors represent negative values.


	Insights into Chemistry: Explainable AI with Group Contribution in Graph Neural Networks

