
Decoding Molecular Language Model with Beam
Search

Stephen Obonyo1[0000−0002−6878−7802], Nicolas Jouandeau1[0000−0001−6902−4324],
and Dickson Owuor3[0000−0002−0968−5742]

1 LIASD, Paris 8 University, Paris, France
2 SCES, Strathmore University, Nairobi, Kenya

{sobonyo,n}@up8.edu

Abstract. Keywords: molecular design · generative modelling · lan-
guage models · tree search · beam search · decoding language model
Molecular design is one of the challenging problems in chemical syn-
thesis due to the large search space of valid molecules. Existing meth-
ods are based on two key encoding approaches: molecular graph and
textual SMILES. Molecular graph encoding methods are expressive and
chemically-aware as they include atoms, bonds and other molecular prop-
erties. SMILES-based approaches on the other hand do not consider any
chemical information and treat the molecules as a sequence of charac-
ters. Current generative molecular graphs and SMILES-based models
learn the distribution of the input and then sample from the learned dis-
tribution to generate new molecules. SMILES-based methods are prone
to generating invalid molecules and are not chemically aware. Despite
this however, the success of Large Language Models (LLMs) in Natu-
ral Language Processing (NLP) has led to the development of strong
LLM methods which are competitive with the state-of-the-art molecular
graph-based methods. This paper shows how a fragment-based SMILES
LLM can be trained and sampled effectively with beam search to improve
the generated molecules’ validity, novelty and uniqueness. We evaluate
the model on two standard molecular design datasets: ZINC and PCBA.
We show that our model can generate accurate molecules with high va-
lidity, novelty and uniqueness while recording results comparable to or
better than the state-of-the-art molecular graph-based methods.

1 Introduction

Molecular design involves the development of new chemical compounds with
desired target properties to solve problems in several areas of application such
as drug design, synthesis of new target materials and materials science [12, 52].
The problem is challenging as there is a large discrete search space which includes
up to 1060 valid synthesizable molecules [52].

The twofold increase in computing power in the last two decades [46] and the
development of novel Artificial Intelligence (AI) methods [37, 33, 36] has inspired
the development of new computer-aided molecular design methods. Specifically,
the advancements in Deep Learning (DL) has led to a new suite of a strong

2 Obonyo, S., Jouandeau, N. Owuor D.

set of neural network architectures which can learn to approximate any function
[26]. A simple neural network architecture, the Perceptron, can be used to ap-
proximate any function by mimicking the human brain’s neurons. To solve more
complex problems, the Perceptron can be stacked to form a Multi-Layer Percep-
tron (MLP) which can learn to solve harder problems. However, training deep
neural networks (MLPs) can be challenging due to the vanishing gradient prob-
lem [5] which leads to performance degradation as the network depth increases.
This limitation is addressed by the development of novel training methods such
as batch and layer normalization [27, 2], residual connections [22], and dropout
[59].

Several DL methods have been proposed to solve the molecular design prob-
lem. Such include deep generative models [18, 24], deep reinforcement learning
[45, 57], machine translation [4, 43, 61], and DL on graphs [32, 21]. Deep gen-
erative models are a suite of DL algorithms that can learn the distribution of
the data then generate new data from the learned distribution. Different data
formats can be used to train deep generative models e.g. text, audio, images,
and graphs (i.e. molecular graphs). Generative models have emerged as a strong
alternative to the classical Machine Learning (ML) molecular design methods.

Molecules can be represented in different ways i.e. molecular graphs, SMILES
strings, fragment molecular graphs or SMILES [47]. A molecular graph is a graph
representation of a molecule where the nodes represent atoms and the edges
represent bonds between the atoms. SMILES (Simplified Molecular Input Line
Entry System) [65] on the other hand is a textual representation of a molecule
consistent with the molecular graph where the atoms, bonds and other molec-
ular properties are encoded as a string of characters. A molecular fragment is
a substructure which is a part of a molecule i.e. functional groups, rings, atoms
and other molecular properties, and can be combined to form a valid molecule.
The fragment-based design approach has been reported to be effective in several
molecular design tasks as the design task is decomposed into smaller subtasks
which can be solved independently. For instance, in Fragment-based Drug de-
sign (FBDD), a target molecule is designed according to the fragments that
are known to bind to the target protein [15, 34]. The approach is a chemically
sound and effective complement to the traditional drug design methods such as
large-scale throughput screening and virtual screening [47].

Researchers have proposed several SMILES-based generative models which
learn the distribution of the molecular text and sample from the learned distribu-
tion to generate new molecules [20, 10, 35, 17]. These works are based on neural
network architectures such as Recurrent Neural Networks (RNNs) [25], Gated
Recurrent Units (GRUs) [9], Variational Autoencoders (VAEs) [31], sequence-
to-sequence models [4, 43, 61], and, recently, the transformers [62]. Despite the
earlier success of RNNs, GRUs, and VAEs in molecular design, these models
are limited by the long-term range of dependencies and are hard to train due
to the vanishing gradient problem [5]. This limitation is also inherited by the
sequence-to-sequence models which use RNNs or GRUs as the encoder and de-
coder. Transformers on the other hand have been shown to be effective in learning

Decoding Molecular Language Model with Beam Search 3

long-term dependencies by using a self-attention mechanism [62]. The success of
transformer-based models on previously hard NLP tasks such as machine trans-
lation, text generation, summarization and question-answering [62, 14, 48] has
inspired the application to other areas such as molecular design [3].

SMILES-based molecular have two key limitations: (i) they are prone to gen-
erating invalid molecules as the next token is sampled autoregressively, and (ii)
they are not chemically-aware i.e. the strings are generated without considering
the chemical properties of the atoms and bonds. With the recent advancements
in DL on graphs [8, 21], graph-based molecular design models are increasingly
becoming popular. These models convert the SMILES into a molecular graph
including atom, bond and other molecular properties then train deep genera-
tive models on the graph itself [32, 30, 19, 58, 68, 38]. While molecular generative
models are chemically aware and more accurate, they require the specification
of the node ordering which can be challenging for large molecules [12]. Addition-
ally, optimization of molecular generation from the continuous space has been
reported as a daunting task by several studies such as [31, 12].

In this paper, we present a fragment-based transformer language model for
molecular design. Contrary to the SMILES-based models are trained on the
molecular text, our model is trained on the molecular fragments recording results
which are comparable to or better than the state-of-the-art graph-based models.
Training the model on the fragments has two key advantages: (1) the model can
generate fragments which can be used in fragment-based problems, (2) the model
is more expressive as the fragments can be combined to form a valid molecule
sequentially.

Contributions: The main contributions of this paper are as follows:

(I) Language model.: We present a fragment-based transformer language
model for molecular design. The model is trained on the fragments of the
molecules and then decoded using beam search to generate new molecules.

(II) Decoding optimization with search. We show how beam search can
be used to improve the validity, uniqueness and novelty of the generated
molecules.

2 Related Work

Fragment-based sequence-to-sequence model by [47] is the closest to our work.
The authors proposed a fragment-based sequence-to-sequence GRU model for
molecular design where the SMILES are broken down into fragments using
Breaking of Retrosynthetically Interesting Chemical Substructures (BRICS) [13]
method. The fragments are embedded and then passed to the GRU encoder-
decoder model. The model is trained on the shifted (similar to the machine
translation sequence to sequence) values of the fragments as the target. The
main difference between our work and [47] is that we use the transformer model
instead of the GRU model. Also, we fine-tune our model generation process us-
ing beam search to generate more valid, unique and diverse molecules. GRUs
inherit the long-term memory dependencies problem which is addressed by the

4 Obonyo, S., Jouandeau, N. Owuor D.

transformer model through the self-attention mechanism. Also, training GRUs
can be challenging due to the vanishing gradient when the size of the input is
long.

In [20], the authors proposed a SMILES objective-reinforced generative ad-
versarial network (ORGAN) model for designing molecules with desired proper-
ties. The model is inspired by [69] to learn molecular sequence output while op-
timizing molecular objectives with REINFORCE [66] algorithm. REINFORCE
is a Reinforcement Learning (RL) algorithm that learns to optimize policy by
learning the actions taken by the agent and updating the policy according to the
gradient with respect to the reward obtained. While the model proved effective
in generating molecules with desired properties, it inherited the limitations of
the SMILES-based models such as generating invalid molecules as well as con-
vergence issues associated with the REINFORCE algorithm and the adversarial
training [1].

In [12], the authors proposed a molecular generative adversarial network
(GAN) [18] which reinforces the molecular property objective using Deep De-
terministic Policy Gradient [39] (DDPG) RL algorithm. GAN learns the dis-
tribution of the molecular space using a generator and a discriminator. The
generator is trained to generate molecules that are indistinguishable from the
real molecules while the discriminator is trained to distinguish between the real
and generated molecules. The DDPG algorithm is used to optimize the molec-
ular property objective towards a non-differentiable reward objective such as
drug-likeness. While the model recorded impressive and competitive results, it
also inherited the limitations of the GANs and DDPG algorithms. GANs suffer
from the mode collapse problem and are also hard to train while DDPG is known
to be unstable and requires careful tuning of the hyperparameters [53]. [54] also
proposed RL-based based on Monte Carlo Tree Search (MCTS) and deep neu-
ral networks as value and policy. Despite the mentioned limitations of the RL
methods, they are effective in reinforcing the molecular property objectives in
end-to-end molecular design pipelines.

CharacterVAE model proposed by [17] is a SMILES-based language model
which uses VAEs to learn the distribution of the molecular text. VAEs are a
class of generative models which learn the distribution of the data by encoding
the input into a latent space and then reconstructing the input from sampling
the latent space. In the work, a recurrent encoder-decoder VAE is used to learn
the distribution of the molecules and then sampled to generate new molecules.
GrammarVAE [35] also uses VAEs to model the distribution of the molecular
molecules, however, the generation process is constrained by a set of syntactic
rules to ensure that the generated molecules are valid. A similar design method
was also employed by SDVAE [10].

Several studies have also approached the molecular design through molecular
graph encoding. Common design approaches in this category include: (i) encode-
decoder models [51, 19, 11], (ii) likelihood-based models which generate arbitrary
graphs sequentially [30, 38, 68] and (iii) direct graph generation models such as

Decoding Molecular Language Model with Beam Search 5

GraphVAE [58], GraphGAN [68], Junction Tree VAE [29] and NeVAE [49], and,
(iv) link prediction models [44, 63, 7].

Recently, the transformer model has recorded state-of-the-art performance in
several NLP tasks such as machine translation, text generation and summariza-
tion and question answering [62, 14, 48]. The model’s success has inspired the
development of strong SMILES-based molecular design models. For instance,
[3] proposed a transformer-based molecular design model called MolGPT. The
model is trained on the SMILES tokens are used to generate new molecules. The
model is shown to be effective in generating valid molecules and is at par with
the state-of-the-art graph-based and SMILES-based models. While this work, is
also closely related to our work, we focus on the fragment-based language model
and how beam search can be used to improve the validity, uniqueness and diver-
sity of the generated molecules. In addition, in the work, the model is trained
on the molecular scaffolds.

3 Methodology

3.1 Fragmenting molecules

Molecular Fragments are small-weight compounds generally composed of less
than 20 atoms. This site has several advantages: (i) they can be manipulated
easily compared to the larger molecules, (ii) it is easier to work with and charac-
terize the fragments, (iii) in drug design, working with fragments is convenient
as the fragments which can bind to the target protein can be easily identified
and experimented with. In this work, we used the BRICS method [13] to frag-
ment the molecules. Figure 1 shows a sample molecule broken according to the
BRICS method while algorithm 1 shows the pseudocode of the fragmentation
process. Given CC(NC(=O)C1CCCN1S(C)(=O)=O)c1ccc2c(c1)OCO2 as the
molecule, three fragments are generated: *C(C)c1ccc2c(c1)OCO2, *NC(*)=O,
C1CCCN1 and *S(C)(=O)=O.

Fig. 1: Fragmentation of with BRICS

6 Obonyo, S., Jouandeau, N. Owuor D.

BRICS breaks the molecule at strategic bonds such that the resulting frag-
ments are chemically sound. After a single step of fragmentation, a dummy atom
is added to the cleavage site to mark the position where the two fragments were
separated (or can be joined). The dummy atom is denoted by an asterisk ∗.
BRICS bond-breaking rules generally preserve the chemical properties such as
the rings, functional groups and the stereochemistry of the molecule.

Our implementation of the BRICS method is shown in algorithm 1. The it-
erative algorithm first identifies the first bond in the molecule and then splits
the molecule at the bond. While the molecule contains fragments, the algorithm
continues to split the molecule at the first available bond. In each split itera-
tion, the molecule is updated to the remaining molecule after the split. If there
are no fragments in the molecule, the algorithm returns the fragments. In the
implementation, we add the leftmost fragment to the list of fragments which is
consistent with the SMILES notation.

Algorithm 1 Iterative fragmentation of molecules
Require: MoleculeM, Fragments O ← { }
1: procedure Fragment(M, O)
2: Initialize start bond b
3: while fragment inM do
4: b← SplitBond(M)
5: if b is not empty then
6: o,M′ ← SplitAtBond(M, b)
7: O ← O ∪ o
8: M←M′
9: else
10: return O
11: end if
12: end while
13: end procedure

3.2 Training Fragment-based Language Model

In this section, we describe the training of the fragment-based language model.
The model is trained on the fragments of the molecules. For instance, given
a molecule M = CC(NC(=O)C1CCCN1S(C)(=O)=O)c1ccc2c(c1)OCO2, the
molecule is broken into fragments (tokens) *C(C)c1ccc2c(c1)OCO2, *NC(*)=O,
C1CCCN1 and *S(C)(=O)=O. Here we used an autoregressive generative
model, GPT-2 [48], as the language model. An autoregressive generative model
is a generative model that models the distribution of the data by predicting the
next token given the previous tokens. Autoregressive models are also referred
to as decoder models as they use a single decoder network to predict the next
token. Formally, given tokens t1, t2, . . . , tn−1, the model predicts the next to-

Decoding Molecular Language Model with Beam Search 7

ken tn by maximizing the likelihood of the token tn given the previous tokens
t1, t2, . . . , tn−1. This can be expressed as shown in equation 1.

max
θ

n∑
i=1

logP (ti|t1, t2, . . . , ti−1; θ) (1)

We trained a smaller version of the GPT-2 model [48] called DistilGPT2
(82M parameter) on the molecular fragments. DistilGPT2 is an English lan-
guage model which is trained through a knowledge distillation process [23] from
the 124M parameter GPT-2 model. The knowledge distillation process involves
training a smaller model which is faster and lighter yet retains the performance
of the larger model. The DistilGPT2 knowledge distillation process follows the
work of [50] which showed how the knowledge in a large masked language model
can be transferred to a smaller model while retaining the performance. A masked
language model is another type of language modelling which is trained to predict
the masked tokens in the input sequence. These models are also referred to as
encoder models as they use a single encoder to predict the masked tokens [14].

We trained a new molecular tokenizer using Byte Pair Encoding (BPE) [55]
algorithm. Accordingly, we modified the DistilGPT2 embedding layer to be con-
sistent without vocabulary size i.e. in the original architecture, the embedding
layer dimensions are 50257 X 768 while the head dimensions are 768 X 50257. We
changed these dimensions to be consistent with our vocabulary size, 913, i.e. the
embedding layer dimensions are 911 X 768 while the head dimensions are 768 X
913 for training on the ZINC dataset. For training on the PCBA dataset, with a
vocabulary size of 1208, the embedding layer and head dimensions were changed
to 1208 X 768 and 768 X 1208 respectively. The model was trained starting
with the pre-trained weights of the DistilGPT2 model. Training the model from
scratch did not yield good results compared to the pre-trained model version.
The model was trained using AdamW optimizer [42] with a learning rate of 1e-4
and, batch size of 32 and 50 epochs. We used cosine annealing learning rate
scheduler [41] to periodically scale the learning rate such that it starts at the
maximum value and then decays to the minimum value over the training period.
The model was trained on three NVIDIA v100 (32 GB memory) for two and a
half days.

Importantly, we trained a new tokenizer for the model. The model was trained
by updating the GPT-2 tokenizer used by the DistilGPT2 model. In the end,
the ZINC dataset included 913 tokens and 1208 tokens for the PCBA dataset.
The tokenizer and the model were trained using Huggingface’s tokenizers and
Transformers libraries [67].

3.3 Greedy and beam search

Generally, LLMs generate sequences by sampling through a greedy approach
i.e. the model selects the token with the highest probability at each time step.
While the greedy search approach is simple and efficient, it tends to generate

8 Obonyo, S., Jouandeau, N. Owuor D.

suboptimal solutions as it does not consider the future implications of the current
token. We discuss these two search methods in the following section.

Fig. 2: Beams and greedy search example.

I) Greedy search: Algorithms based on greedy selection prioritize the op-
timal choice at each step, without taking into account potential future
implications. In LLMs decoding process this can be expressed as tt =
argmaxt P (t|t1:t−1) where tt is the token at time step t, P (t|t1:t−1) is the
probability of the token t given the previous tokens t1:t−1. The fundamen-
tal stages of greedy search comprise (i) defining an objective function for
a given problem, (ii) selecting the best option that optimizes the objective
function at each step of the search process, and (iii) repeating this process
until a solution is obtained. However, the greedy search methodology ne-
glects alternatives that could potentially yield superior solutions, resulting
in suboptimal outcomes. To address the limitations of greedy search, sev-
eral approaches have been proposed, including ε-greedy and beam search.
The ε-greedy algorithm operates similarly to the greedy algorithm but in-
troduces a probability ε for exploring alternative options and a probability
of 1−ε for exploiting the best option. The ε-greedy approach is extensively
utilized in RL, where the agent aims to learn an optimal policy through
trial and error to maximize the expected cumulative future reward. To
achieve this, the agent explores the environment by selecting random ac-
tions with a probability ε and exploits the best action with a probability
of 1− ε.

II) Beam search: While the greedy search approach tends to disregard solu-
tions with higher probabilities that are obscured by lower probability so-

Decoding Molecular Language Model with Beam Search 9

lutions, the beam search method mitigates this issue. Beam search retains
the most probable solutions at each time step and subsequently employs
these to determine the one with the overall highest probability. The quan-
tity of probable solutions (paths) retained is regulated by the number of
beams parameter in the beam search algorithm. Although a higher num-
ber of beams may result in improved solutions, it is also more likely to
increase computational complexity. An illustrative example (in Figure 2)
is the generation of words using a LLM e.g. GPT-2 [48], where the goal is to
produce the subsequent sequence of words given a specific input sequence.
In the given example, the number of beams is set to 2, and at time step
1, the most probable solution is "the nice" with a probability of 0.5, while
the second most probable solution is "the good" with a probability of 0.3.
During the second time step, the most probable solution (sequence) is "the
good dog" with an overall probability of 0.3 × 0.9 = 0.27. Although the
"the nice" sequence appeared to be the best choice according to the greedy
search in step 1, it is outperformed by the "the good dog" sequence in step
2. The beam search algorithm has been successfully employed in various
NLP tasks, such as machine translation and causal language modelling [60,
56], to enhance the sequence generation process.
The beam search algorithm can be applied to optimize numerous bioinfor-
matics problems, including RNA/DNA sequence modelling, gene predic-
tion, protein structure prediction, molecular design, and drug discovery.
For instance, in molecular design, the objective is to produce a sequence
of molecular fragments that optimize the desired properties, such as sol-
ubility or drug-likeness. The beam search can be adapted to focus on the
given molecular property objective instead of the likelihood of the sequence
(probability) to generate the sequence that optimizes the molecular objec-
tive. A pseudocode of the beam search algorithm using a language model
to generate the token in every time step is presented in algorithm 2 where
the language model can produce a character or a word at each time step
based on the problem context, e.g., in molecular design, the model can gen-
erate a sequence of molecular fragments or generate a base in RNA/DNA
sequence problems.

Algorithm 2 Decoding LLM with Beam Search
Require: Model Mθ, input x, vocabulary V , sequence length T , beam width B
1: Initialize output O0 ← {()}
2: for 1 . . . T do
3: Ct ← {o

⋃
Mθ(x)}where Mθ(x) ∈ V and o ∈ Ot−1 . Sample next tokens

4: Ot ← argmaxS⊆Ct,|S|=B logMθ(S|x) . Best B sequences
5: end for
6: return argmaxS∈OT logMθ(S|x)

10 Obonyo, S., Jouandeau, N. Owuor D.

4 Experiments

In our experiments, we train and evaluate the model on the ZINC [28] and PCBA
[64] datasets. The ZINC dataset is composed of approximately 250,000 drug-like
molecules while the PCBA dataset is composed of 440,000 bioactive molecules.
The dataset was preprocessed following the work of [47] where the duplicate
molecules were first removed, then followed by a fragmentation process according
to algorithm 1. After this, the resulting molecules with less than 2 fragments were
filtered out. In the end, the ZINC dataset used in our experiments contained
227K samples and 383K for the PCBA dataset. The model was trained on the
ZINC datasets.

Table 1: Summary of the dataset statistics used in the experiments.
ZINC PCBA

Original dataset samples (before preprocessing) 249,455 437,929
Filtered samples (more than 2 fragments) 227,940 383,788
Average fragments 2.3 2.4
Vocabulary size 913 1208
Average atoms 23.60 27.30
Average bonds 27.30 29.63
Average rings 2.80 3.92

During the decoding process, we experimented with a beam width of 2, 4
and 6 and compared the performance of the beam search variations with greedy
search as well baseline models such as ChemVAE [17] GrammarVAE [35], SD-
VAE [10], CGVAE [40], NeVAE [49], MolGAN [12] and LFM [47]. The baseline
models include both the SMILES-based (ChemVAE, GrammarVAE, SDVAE)
and graph-based models (CGVAE, NeVAE, MolGAN). The evaluation metrics
used in the experiments include validity, uniqueness and novelty. We discuss each
of these metrics in the following section.

(i) Validity: Out of the generated molecules, validity corresponds to the frac-
tion of molecules which map to a valid SMILES string. A valid SMILES
string is a string that can be converted to a molecular graph.

(ii) Uniqueness: this is the ratio of the unique molecules generated to the
total generated molecules.

(iii) Novelty: the fraction of valid molecules to the total generated molecules
and not present in the training set.

5 Results

We present the model results in Table 2. All the results of the baseline models
were obtained from the [12] and [47]. We did not run these models in our ex-
periments. In the table, we present the results of the baselines as well as our

Decoding Molecular Language Model with Beam Search 11

model with beam search and greedy search. We experimented with 2, 4 and
6 number of beams. The abbreviations are as follows LM: Language Model,
Mol. graph: Molecular graph, fragLM: Fragment-based Language Model, beam
number: number of beams, and SMILES/Graph: model trained on SMILES or
molecular graph.

Table 2: Model and baseline results on the ZINC and PCBA datasets.
Model LM/Graph Dataset Validity Novelty Uniqueness

ChemVAE LM ZINC 0.170 0.980 0.310
GrammarVAE LM ZINC 0.310 1.000 0.108
SDVAE LM ZINC 0.435 - -
GraphVAE Mol. graph ZINC 0.140 1.000 0.316
CGVAE Mol. graph ZINC 1.000 1.000 0.998
NeVAE Mol. graph ZINC 1.000 0.999 1.000
LFM fragLM ZINC 1.000 0.995 0.998
LFM fragLM PCBA 1.000 0.991 0.972
MolGAN Mol. graph ZINC 0.981 0.942 0.104

Ours (Greedy) fragLM ZINC 0.982 0.988 0.901
Ours (Beam 2) fragLM ZINC 1.000 0.982 0.992
Ours (Beam 4) fragLM ZINC 0.994 0.951 0.981
Ours (Beam 6) fragLM ZINC 0.995 0.961 0.995
Ours (Greedy) fragLM ZINC 0.973 0.963 0.921
Ours (Beam 2) fragLM PCBA 1.000 0.956 0.998
Ours (Beam 4) fragLM PCBA 0.995 0.945 0.996
Ours (Beam 6) fragLM PCBA 0.994 0.938 0.993

Fig. 3: Molecular property on ZINC dataset with beams=2

We also performed an analysis of our models’ molecular properties on the
ZINC and PCBA datasets. These properties are key to evaluating our model
apart from the validity, uniqueness and novelty by showing the extent to which

12 Obonyo, S., Jouandeau, N. Owuor D.

Fig. 4: Molecular property on ZINC dataset with beams=4

the model simulated the training data distributions. We present the results of
three molecular properties (i) Drug-likeness: the extent to which the molecule
is similar to the known drugs [6], Synthetic accessibility: the ease of synthesiz-
ing a given molecule [16] and, (iii) LogP: measures the solubility of a molecule.
Figures 3, 4, 5 and 6 show the results of the molecular properties on the ZINC
and PCBA datasets. In the Figure drug-likeness is abbreviated as qed, synthetic
accessibility as sa and logP as logp. The results show that the model can gen-
erate molecules with similar properties to the training data. Notably, our model
can optimize these objectives despite not being programmed explicitly to do so.
Other baselines such as MolGAN, however, learn the distribution of the molecu-
lar properties while also optimizing the network towards the molecular property
objective.

Fig. 5: Molecular property on PCBA dataset with beams=2

We generated some sample molecules based on the ZINC dataset and plotted
them in Figure 7. In the Figure, the left includes samples drawn from the ZINC
dataset and the right includes samples generated by our model with several
beams set to 2. The generated molecules are chemically sound and structurally
similar to the molecules in the ZINC dataset. The generated molecules are also
diverse and unique which is consistent with the results in Table 2.

Decoding Molecular Language Model with Beam Search 13

Fig. 6: Molecular property on PCBA dataset with beams=4

(a) ZINC samples (b) Samples from beam = 2 model

Fig. 7: Generated sample compared to the ZINC dataset

6 Discussion

In this paper, we presented a fragment-based language model for molecular de-
sign. The model was then decoded in a greedy fashion as well as using beam
search with varying numbers of beams; 2, 4 and 6. We evaluated the perfor-
mance of the model on the ZINC and PCBA datasets. Our model was able to
generate valid molecules with several beams set to 2 on both datasets. Decoding
the language model with greedy search leads to suboptimal solutions compared
to the beam search. For instance, on PCBA and ZINC datasets, the greedy search
recorded validity of 0.973 and 0.982 respectively while the beam search with 2

14 Obonyo, S., Jouandeau, N. Owuor D.

beams recorded 1.000 on both. Another key observation is that decoding the
language model with beam search leads to more unique and diverse molecules
compared to the greedy search. For instance, on the ZINC dataset, the greedy
search recorded a uniqueness of 0.921 while the beam search with 2, 4 and 6
beams recorded 0.992, 0.981 and 0.995 respectively. On the PCBA dataset, the
greedy search recorded a uniqueness of 0.938 while the beam search with 2, 4
and 6 beams recorded 0.998, 0.996 and 0.993 respectively. Beam search allows
the generation of molecules which are not only valid but also unique and diverse.
Overall, the results recorded by our model are comparable to the state-of-the-art
graph-based models such as MolGAN and NeVAE. Notably, our results are as
competitive as the LFM model which is also a fragment-based model, however,
our implementation is based on the transformer model while LFM is based on
the Encoder-Decoder GRU model. Another key variation between our model
and LFM is the complexity; our model is a decoder only while LFM is encoder-
decoder and thus faster to train and converge faster.

Importantly, both greedy and beam search-based decoding models can opti-
mize molecular properties such as drug-likeness, synthetic accessibility and logP.
While the results are promising, they are not as competitive as the MolGAN
model where such properties are explicitly optimized. This lays an interesting
future research direction on how the fragment-based language model can be
used to optimize molecular space for the generation of new molecules as well as
optimize the molecular properties.

7 Conclusion and future research

In this paper, we presented a fragment-based language model for molecular de-
sign. The model is trained on the fragments of the molecules and is used to
generate new molecules. We showed that the language model can be used to
generate valid molecules comparable to the state-of-the-art graph-based models.
We also showed how beam search can be used to improve the validity, unique-
ness and diversity of the generated molecules. As part of future work, we plan
to investigate fragment-based molecular modelling with larger language models
such as GPT-3 and LLAMA models. Optimization of the molecular property
with validity, uniqueness and novelty in an end-to-end fashion is also open for
future research.

8 Acknowledgement

This work was granted access to the HPC/AI resources of IDRIS under the
allocation 2023-AD010614071 made by GENCI.

9 On data and code

The datasets used in this work are public. The code and information on the
model is available at https://github.com/steveowk/molfragement.

Decoding Molecular Language Model with Beam Search 15

References

1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein gan: Machine learning. stat.
ML (2017)

2. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint
arXiv:1607.06450 (2016)

3. Bagal, V., Aggarwal, R., Vinod, P., Priyakumar, U.D.: Molgpt: molecular gener-
ation using a transformer-decoder model. Journal of Chemical Information and
Modeling 62(9), 2064–2076 (2021)

4. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

5. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks 5(2), 157–166 (1994)

6. Bickerton, G.R., Paolini, G.V., Besnard, J., Muresan, S., Hopkins, A.L.: Quanti-
fying the chemical beauty of drugs. Nature chemistry 4(2), 90–98 (2012)

7. Bojchevski, A., Shchur, O., Zügner, D., Günnemann, S.: Netgan: Generating graphs
via random walks. In: International conference on machine learning. pp. 610–619.
PMLR (2018)

8. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric
deep learning: going beyond euclidean data. IEEE Signal Processing Magazine
34(4), 18–42 (2017)

9. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using rnn encoder-decoder for sta-
tistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

10. Dai, H., Tian, Y., Dai, B., Skiena, S., Song, L.: Syntax-directed variational autoen-
coder for molecule generation. In: Proceedings of the international conference on
learning representations (2018)

11. Davidson, T.R., Falorsi, L., De Cao, N., Kipf, T., Tomczak, J.M.: Hyperspherical
variational auto-encoders. arXiv preprint arXiv:1804.00891 (2018)

12. De Cao, N., Kipf, T.: Molgan: An implicit generative model for small molecular
graphs. arXiv preprint arXiv:1805.11973 (2018)

13. Degen, J., Wegscheid-Gerlach, C., Zaliani, A., Rarey, M.: On the art of compiling
and using’drug-like’chemical fragment spaces. ChemMedChem 3(10), 1503 (2008)

14. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

15. Erlanson, D.A., McDowell, R.S., O’Brien, T.: Fragment-based drug discovery. Jour-
nal of medicinal chemistry 47(14), 3463–3482 (2004)

16. Ertl, P., Schuffenhauer, A.: Estimation of synthetic accessibility score of drug-like
molecules based on molecular complexity and fragment contributions. Journal of
cheminformatics 1, 1–11 (2009)

17. Gómez-Bombarelli, R., Wei, J.N., Duvenaud, D., Hernández-Lobato, J.M.,
Sánchez-Lengeling, B., Sheberla, D., Aguilera-Iparraguirre, J., Hirzel, T.D.,
Adams, R.P., Aspuru-Guzik, A.: Automatic chemical design using a data-driven
continuous representation of molecules. ACS central science 4(2), 268–276 (2018)

18. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural infor-
mation processing systems 27 (2014)

19. Grover, A., Zweig, A., Ermon, S.: Graphite: Iterative generative modeling of
graphs. In: International conference on machine learning. pp. 2434–2444. PMLR
(2019)

16 Obonyo, S., Jouandeau, N. Owuor D.

20. Guimaraes, G.L., Sanchez-Lengeling, B., Outeiral, C., Farias, P.L.C., Aspuru-
Guzik, A.: Objective-reinforced generative adversarial networks (organ) for se-
quence generation models. arXiv preprint arXiv:1705.10843 (2017)

21. Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: Meth-
ods and applications. arXiv preprint arXiv:1709.05584 (2017)

22. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

23. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015)

24. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Advances in
neural information processing systems 33, 6840–6851 (2020)

25. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
9(8), 1735–1780 (1997)

26. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are uni-
versal approximators. Neural networks 2(5), 359–366 (1989)

27. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: International conference on machine learning.
pp. 448–456. pmlr (2015)

28. Irwin, J.J., Shoichet, B.K.: Zinc- a free database of commercially available com-
pounds for virtual screening. Journal of chemical information and modeling 45(1),
177–182 (2005)

29. Jin, W., Barzilay, R., Jaakkola, T.: Junction tree variational autoencoder for molec-
ular graph generation. In: International conference on machine learning. pp. 2323–
2332. PMLR (2018)

30. Johnson, D.D.: Learning graphical state transitions. In: International conference
on learning representations (2022)

31. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

32. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

33. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Communications of the ACM 60(6), 84–90 (2017)

34. Kumar, A., Voet, A., Zhang, K.Y.: Fragment based drug design: from experimen-
tal to computational approaches. Current medicinal chemistry 19(30), 5128–5147
(2012)

35. Kusner, M.J., Paige, B., Hernández-Lobato, J.M.: Grammar variational autoen-
coder. In: International conference on machine learning. pp. 1945–1954. PMLR
(2017)

36. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444
(2015)

37. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

38. Li, Y., Vinyals, O., Dyer, C., Pascanu, R., Battaglia, P.: Learning deep generative
models of graphs. arXiv preprint arXiv:1803.03324 (2018)

39. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,
Wierstra, D.: Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971 (2015)

40. Liu, Q., Allamanis, M., Brockschmidt, M., Gaunt, A.: Constrained graph varia-
tional autoencoders for molecule design. Advances in neural information processing
systems 31 (2018)

Decoding Molecular Language Model with Beam Search 17

41. Loshchilov, I., Hutter, F.: Sgdr: Stochastic gradient descent with warm restarts.
arXiv preprint arXiv:1608.03983 (2016)

42. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017)

43. Luong, M.T., Le, Q.V., Sutskever, I., Vinyals, O., Kaiser, L.: Multi-task sequence
to sequence learning. arXiv preprint arXiv:1511.06114 (2015)

44. Minervini, P., Demeester, T., Rocktäschel, T., Riedel, S.: Adversarial sets for reg-
ularising neural link predictors. arXiv preprint arXiv:1707.07596 (2017)

45. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level
control through deep reinforcement learning. nature 518(7540), 529–533 (2015)

46. Moore, G.E.: Cramming more components onto integrated circuits. Proceedings of
the IEEE 86(1), 82–85 (1998)

47. Podda, M., Bacciu, D., Micheli, A.: A deep generative model for fragment-based
molecule generation. In: International conference on artificial intelligence and
statistics. pp. 2240–2250. PMLR (2020)

48. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language
models are unsupervised multitask learners (2019)

49. Samanta, B., De, A., Jana, G., Gómez, V., Chattaraj, P., Ganguly, N., Gomez-
Rodriguez, M.: Nevae: A deep generative model for molecular graphs. Journal of
machine learning research 21(114), 1–33 (2020)

50. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108 (2019)

51. Schlichtkrull, M., Kipf, T.N., Bloem, P., Van Den Berg, R., Titov, I., Welling,
M.: Modeling relational data with graph convolutional networks. In: The semantic
web: 15th international conference, ESWC 2018, Heraklion, Crete, Greece, June
3–7, 2018, proceedings 15. pp. 593–607. Springer (2018)

52. Schneider, G., Fechner, U.: Computer-based de novo design of drug-like molecules.
Nature Reviews Drug Discovery 4(8), 649–663 (2005)

53. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

54. Segler, M.H., Preuss, M., Waller, M.P.: Planning chemical syntheses with deep
neural networks and symbolic ai. Nature 555(7698), 604–610 (2018)

55. Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909 (2015)

56. Shao, L., Gouws, S., Britz, D., Goldie, A., Strope, B., Kurzweil, R.: Generat-
ing high-quality and informative conversation responses with sequence-to-sequence
models. arXiv preprint arXiv:1701.03185 (2017)

57. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Master-
ing the game of go with deep neural networks and tree search. nature 529(7587),
484–489 (2016)

58. Simonovsky, M., Komodakis, N.: Graphvae: Towards generation of small graphs us-
ing variational autoencoders. In: Artificial Neural Networks and Machine Learning–
ICANN 2018: 27th International Conference on Artificial Neural Networks, Rhodes,
Greece, October 4-7, 2018, Proceedings, Part I 27. pp. 412–422. Springer (2018)

59. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. The journal of
machine learning research 15(1), 1929–1958 (2014)

18 Obonyo, S., Jouandeau, N. Owuor D.

60. Sun, H., Liu, X., Gong, Y., Zhang, Y., Jiang, D., Yang, L., Duan, N.: Allies:
Prompting large language model with beam search. In: The 2023 Conference on
Empirical Methods in Natural Language Processing (2023)

61. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. Advances in neural information processing systems 27 (2014)

62. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need. Advances in neural information pro-
cessing systems 30 (2017)

63. Wang, H., Wang, J., Wang, J., Zhao, M., Zhang, W., Zhang, F., Xie, X., Guo,
M.: Graphgan: Graph representation learning with generative adversarial nets. In:
Proceedings of the AAAI conference on artificial intelligence. vol. 32 (2018)

64. Wang, Y., Bryant, S.H., Cheng, T., Wang, J., Gindulyte, A., Shoemaker, B.A.,
Thiessen, P.A., He, S., Zhang, J.: Pubchem bioassay: 2017 update. Nucleic acids
research 45(D1), D955–D963 (2017)

65. Weininger, D.: Smiles, a chemical language and information system. 1. introduction
to methodology and encoding rules. Journal of chemical information and computer
sciences 28(1), 31–36 (1988)

66. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning 8, 229–256 (1992)

67. Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P.,
Rault, T., Louf, R., Funtowicz, M., et al.: Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint arXiv:1910.03771 (2019)

68. You, J., Ying, R., Ren, X., Hamilton, W., Leskovec, J.: Graphrnn: Generating
realistic graphs with deep auto-regressive models. In: International conference on
machine learning. pp. 5708–5717. PMLR (2018)

69. Yu, L., Zhang, W., Wang, J., Yu, Y.: Seqgan: Sequence generative adversarial
nets with policy gradient. In: Proceedings of the AAAI conference on artificial
intelligence. vol. 31 (2017)

