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Abstract. In chemical process engineering, the accuracy and realism of
simulated data are crucial for the effective design and optimization of
a wide range of processes. In this paper, we demonstrate the efficacy of
neural style transfer methods to enhance the realism of time series data
generated from simulations. Specifically, this machine learning technique
allows us to learn the style characteristics of non-parallel experimen-
tal data obtained from real-world chemical plants and then use them
to transform simulated data to more closely reflect the realistic behav-
iors and variabilities not captured by the simulation model. We propose
a transformer-based architecture with a latent representation that dis-
entangles content and style information. After training, the underlying
generative model allows for fast and data-efficient stylized generation
without requiring many iterations of gradient-based optimization per
sample, as in other time series style transfer baselines. We show the ef-
ficacy of our approach on both synthetic data and in an application to
batch distillation.

Keywords: Generative Models · Style Transfer · Disentanglement · En-
hanced Realism · Chemical Process Engineering

1 Introduction

In many scientific applications, we can produce simulated data of the measurable
process of interest. However, simulations make simplifying assumptions that re-
sult in over-simplified predictions that do not account for all real-world effects,
environmental conditions and imperfections. They are often systematically bi-
ased and produce inaccurate results under specific conditions. Further processing
of the simulation data, such as in deep learning models that are trained on this
data to perform downstream tasks such as anomaly detection, requires the data
to be as realistic as possible to make robust predictions that are still useful when
applied to real experimental data. Therefore, to make the simulation data more
realistic and augment existing experimental data sets, the simulation data needs
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to be adapted. In this paper, we demonstrate this in an application to batch
distillation.

Batch processes, such as batch distillations, play a vital role in flexible small-
scale production processes which are relevant in, e.g., biotechnology or phar-
maceutical industries. In a batch process, a feed mixture is introduced into the
plant prior to start-up, and after completion of one plant-operation, the plant is
emptied, then new feed is introduced [27, 3]. The behavior of the whole process
is inherently transient, one operating point of a process translates to a plethora
of different conditions in the plants. Researchers greatly benefit from the ability
to rapidly and inexpensively evaluate their hypotheses before they are tested in
practical experiments. Simulation studies are, therefore, one of the most impor-
tant tools in process engineering.

There are two challenges in adapting simulation data to be more realistic.
The first is that the amount of experimental data to learn from is typically
limited since experiments are expensive. The second is that the data should
be transformed without changing the main content of the data. Due to these
challenges, we propose to view the problem at hand as a style transfer prob-
lem. In image style transfer [14, 11, 18, 8], an image is transformed to a different
style without changing its content, typically based on a small set of reference
images. This can be achieved, for example, by learning a latent representation
that separates style and content. Then, during inference, we can adjust the style
part of the latent representation independently from the content part. Specif-
ically, our proposed method is based on stylized variational autoencoders and
leverages separate content and style losses to disentangle the style and content
information.

In this paper, we focus on the application of style transfer methods to time
series. As in image style transfer, we define style as a set of characteristic features
inherent in a given dataset and learn them from the data with a neural network.
This permits the automatic extraction of style information from a reference style
sample or dataset, even for complex style transfer tasks. Recent work [7, 12] has
shown promising results but has been limited to slow iterative methods that
require many iterations per sample. To summarize, our main contributions are:

– We propose a style transfer method based on a variational autoencoder with
a disentangled latent space that is fast and well-suited for style transfer tasks
involving time series.

– We present a data-efficient training scheme that allows us to effectively ob-
tain stylized samples even in the absence of a large style dataset.

– We demonstrate the efficacy of the style transfer methodology to enhance
realism of simulation data in a chemical process engineering application.

2 Background

2.1 Variational Autoencoder

A generative latent variable model first samples – from a prior p(z) – a point z
in a low-dimensional latent space, which then informs a conditional distribution
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pθ(x|z) over the target domain. Most commonly, this is a Gaussian model with a
mean that is parameterized through a neural network µθ(z), providing a complex
and flexible model that can approximate a large class of data distributions:

z ∼ N (0, I)
x|z ∼ N

(
µθ(z), σ

2I
) (1)

To fit the model to data, we minimize the negative evidence lower bound (NELBO)
−Lθ(q) that bounds the intractable negative marginal likelihood from above via

−Lθ(q) := Ez∼q

[
− log

pθ(x|z)p(z)
q(z)

]
= − log pθ(x) + KL(q ∥ pθ(z|x))︸ ︷︷ ︸

≥0

. (2)

using an approximation q to the posterior pθ(z|x). A variational autoencoder
(VAE) [21] uses amortized variational inference [23, 2] to optimize θ and q jointly
by setting, e.g., q = qψ(z) = N

(
gψ(x),Diag(hψ(x)

2)
)
, where gψ(x) and hψ(x)

are neural networks. This allows us to optimize (2) for θ and ψ by minimizing

L(θ, ψ) β=1
= Ez∼qψ

[
1

2σ2
∥x− µθ(z)∥22

]
+ βKL(qψ(z) ∥ p(z))

by first sampling z from the variational encoder qψ(z) and then decoding the
mean µθ(z) of the data likelihood pθ(x|z). We then compute the NELBO as a
sum of a reconstruction term and a KL term that regularizes the latent space
and back-propagate the gradients. By letting β be a hyperparameter, we can de-
termine the trade-off between reconstruction quality and latent space structure.

2.2 Style Transfer

Style transfer is a complex task due to the subjective and task-specific nature of
style and realism. Style is defined in terms of distinctive characteristics in data,
such as tone in text or color palette in images. There are two main approaches
to formalizing style: The feature-based approach identifies specific features that
define style, while the distinction-based approach focuses on the overall distinc-
tiveness, often using methods like Generative Adversarial Networks (GANs) [16]
to ensure stylized outputs are indistinguishable from real style samples. Here,
we focus on the former. First, we define a feature map ϕ that maps from data
space to feature space such that ϕi(x)j is the value (i.e. activation) of feature
ϕi at position j of data sample x. Although we can specify ϕ by hand [24, 12],
in complex style transfer tasks, the features are usually learned implicitly via an
unrelated task, such as image classifications [14] or unsupervised representation
learning, for example, with a denoising autoencoder [7]. After training a (con-
volutional) neural network on the specified tasks we can directly use its learned
features as style features. Next, we define similarity in style and content via

Lc(x,y) ∝
∑
i

∥ϕi(x)− ϕi(y)∥22

Ls(x,y) ∝
∑
i

∥µ(ϕi(x))− µ(ϕi(y))∥22 + ∥σ(ϕi(x))− σ(ϕi(y))∥22,
(3)
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where Lc and Ls are the content loss and style loss between data points x and
y, respectively. Intuitively, in samples that are close in content, the locations
of detectable features are similar, yielding similar feature activations and small
Lc. Conversely, the feature mean and standard deviation capture aggregated
information, revealing abstract properties unrelated to image content. If samples
are close in style, they share similar feature statistics, and Ls is small. Finally,
after choosing appropriate features and losses, we formulate style transfer as an
optimization problem: Given a data sample x and style samples si ∼ p(s) find

y′ = min
y
λcLc(x,y) + λs

Ns∑
i=1

Ls(si,y). (4)

Here λc and λs are hyperparameters that allow for control over the mentioned
trade-off. Usually, only one sample suffices. There are many different approaches
to finding solutions to (4) or similar optimization problems [19], generally falling
into two categories: Data-based methods optimize (4) directly. Gatys et al.
[14], for example, initialize y randomly and use gradient descent with back-
propagated gradients. This is slow, as it needs to be repeated for every generated
sample. Model-based approaches, on the other hand, generate stylized samples
directly, training an end-to-end model fθ(x) with a fixed style via

min
θ

Ex∼p(x)

[
λcLc(x, fθ(x)) + λs

Ns∑
i=1

Ls(si, fθ(x))

]
. (5)

or with arbitrary style as learned from S = {s1, . . . , sNs} via

min
θ

Ex∼p(x)

[
λcLc(x, fθ(x, S)) + λs

Ns∑
i=1

Ls(si, fθ(x, S))

]
. (6)

On images, arbitrary style transfer has been implemented, for example, with
CNNs [11, 18] or transformers [8].

3 Method

3.1 Stylized VAE

We want to adapt a VAE, to solve arbitrary style transfer as in (6). The com-
monly used Gaussian model (1), however, entails minimizing a MSE loss and
is not suitable for the stylized reconstruction needed in style transfer tasks: As
p(x|z) adds noise directly to our observation, noisy samples, which have a dif-
ferent style, are modeled with a high likelihood. Moreover, this causes a smooth
and blurry mean that averages out several plausible reconstructions, hindering
correct stylization. We circumvent this problem by adding noise directly in fea-
ture space. This gives us a generative model that allows for sufficiently complex
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generation, fine control over stylization, and a mean that has average features,
in a way, the most representative reconstruction possible. Specifically, we define

z ∼ N (0, I)
ηc(x)|z ∼ N (ηc(fθ(z)), σ

2
cI)

ηs(x)|z ∼ N (ηs(fθ(z)), σ
2
sI),

(7)

where ηc(x) = [{ϕi(x)j}ij ], ηs(x) = [{µ(ϕi(x))}i, {σ(ϕi(x))}i], and [·] denotes
the concatenation of all feature activations (or feature statistics) into one vector.
As our features η(x) = [ηc(x), ηs(x)] should contain sufficient information about
the original sample x, η is approximately invertible, i.e., there exists η̃−1 with
x̃ := η̃−1(η(x)) ≈ x. Then, although p(x|z) may not be uniquely defined (it is
only if η is invertible), any potential candidate for p(x|z) is close in distribution
to the approximate conditional p(x̃|z), which we could sample from via

x′ = η̃−1(η(fθ(z)) + w), w ∼ N (0,σ2I),

highlighting that we add noise in feature space, allowing fθ(z) to have average
features, as intended. To see the connection to style transfer, note that we can
find optimal parameters θ and ψ by minimizing the corresponding NELBO

L(θ, ψ) = Ez∼qψ [λcLc(x, fθ(z)) + λsLs(x, fθ(z))] + λKLKL(qψ(z) ∥ p(z)), (8)

with Lc and Ls as in (3) which is a regularized version of (5), where x is both
the content and style sample. Note that λc, λs, and λKL control the trade-off
between content preservation, stylization, and latent space structure.

3.2 Disentanglement and Inference

The VAE defined above allows for stylized reconstruction, where both content
and style information are encoded in z. To solve arbitrary style transfer as in
(6), we propose the use of latent swapping. That is, we define z = [zc, zs] as the
concatenation of two latent spaces containing the relevant latent representation
of content and style, respectively. After training, we then perform style transfer
by swapping in a different style latent variable with

[zc(x), zs(x)] ∼ qψ(z|x)
[zc(s), zs(s)] ∼ qψ(z|s)
y = fθ(z

c(x), zs(s)),

(9)

for a time series x and a style sample s. The sample y is a good solution if both
Lc(x,y) and Ls(s,y) are small. This is the case, for example, when x ≈ x̃ =
fθ(z

c(x), zs(x)), i.e., reconstruction quality is high for all x, and content and
style are properly disentangled/separated in the latent space, e.g., as quantized
by low mutual information I(qψ(z

c|x), qψ(zs|x)). Then, since x̃ contains the same
content and style information as x, zc(x) must contain the content information,



6 J. Will et al.

zs(x1)

zc(x1)

zs(x2)

zc(x2)

x1

x2

x′

Lc

Ls

fθ

qψ

qψ

Fig. 1: A sketch of latent swapping during training and inference.

and zs(x) must contain the style information. Even in cases where we are only
able to obtain imperfect disentanglement (e.g. when the concepts of content
and style are not fully independent), our method may still produce accurately
stylized samples as long as fθ ignores all residual style information in zc(x) and
content information in zs(x).

To this end, we propose a new method of active disentanglement, guided
by the two separate loss functions unique to style transfer. We perform latent
swapping as in (9) during training and adapt the loss in (8) accordingly to:

L(θ, ψ) = E
zc∼qψ(·|x1)
zs∼qψ(·|x2)

[λcLc(x1, fθ(z)) + λsLs(x2, fθ(z))] + λKLKL(qψ(z) ∥ p(z)),

with z = [zc, zs]. This is illustrated in Figure 1 and has two advantages. First,
we directly optimize the style transfer problem (6), which justifies our approach
mathematically, and second, we tailor our disentanglement to the specific notion
of content and style implicitly defined through the content and style loss. Lastly,
if zc(x1) and zs(x2) contain undesired residual information, fθ learns to ignore
this additional information.

3.3 Model architecture

To complete the specification of our model, we define the encoder qψ(z|x) and
the decoder fθ. We use transformer models [30] to allow our model to attend to
long-range dependencies in the data and, therefore, to quickly generate correctly
stylized time series even for complex styles. An overview of our model architec-
ture can be found in Figure 2. Similar to GPT [25] and BERT [9] models, we only
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Fig. 2: The proposed transformer architecture. The model consists of two varia-
tional encoders (above) and the variational decoder (below). A query token q is
appended only for the style encoder.

use a transformer encoder. We do not mask any connections in the self-attention
layers and normalize before applying the attention and feed-forward layers to
make training more stable [33]. Recent works [37, 36] that apply transformers
to time series, embed data into a higher-dimensional space using a simple linear
projection, but we found that additionally encoding context information using
a convolution with a small kernel size of 5, improves training speed significantly.
To this representation, we add positional information with a sinusoidal posi-
tional encoding P as in [30]. Similar to DSAE [34], our model allows for style
transfer by disentangling content and style in the latent space. The latent space
thus consists of a time-dependent component zc ∈ Rdlen×dclatent for content and
a time-invariant component zs ∈ Rdslatent for global style information. We use
one transformer per component to jointly learn both the mean and the standard
deviation of the latent variables. For the time-dependent zc the parameters are
obtained through a linear projection of the learned transformer representation at
the respective position; for the time-invariant zs a query-based approach similar
to Carion et al. [6] is used. To this end, we append an all-zero query token to the
beginning of the embedded time series, extend each position to include a query
flag, and extract the latent parameters from the value accumulated in the query
position with a linear projection. After sampling, the latent variables are again
embedded with a linear projection and positional encoding.

3.4 Pretraining

Transformer models are very flexible and powerful but they also need a lot
of training data, particularly big models like GPT and BERT [25, 9]. There-
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fore, these models are first trained on unsupervised tasks with a large unla-
beled dataset. Although our transformer model is much more compact, proper
pretraining still has the potential to improve performance and to decrease the
required amount of data significantly [29]. Similar to Denoising Autoencoders
(DAE) [31], we pretrain our VAE to reconstruct the original time series from
corrupted inputs. In our case, the inputs are corrupted by masking and adding
noise to chunks of a fixed length at random positions. Specifically, following the
BERT paper, we mask each chunk with a probability of 16% and add zero-mean
standard Gaussian noise to it with a probability of 2%. To mask a position of
our input, we set the embedded representation to an all-zero mask token and
extend every position in the embedding by a mask flag.

4 Application of the Method

To show the effectiveness of our style transfer method, we first test on synthetic
data where we have fine control and unlimited data. Then, we demonstrate the
ability to enhance realism in an application to batch distillation data. We obtain
style features by training a denoising autoencoder on the full combined dataset of
content and style samples. For both experiments, we compare our model-based
approach using Disentangled Variational Autoencoder (DVAE) with iterative
direct optimization (IDO) of (4) as in [7]. As the notions of style are not very
complex, we assume that IDO will give results that are close to optimal. However,
we show that our approach produces samples much faster since no iterative
optimization is required while only sacrificing a minimal amount of quality.

4.1 Evaluation

Objectively evaluating the quality of stylized generation is difficult, as we care
about multiple contradicting goals, including content preservation, stylization,
and utility as data augmentation for downstream tasks. We can control some
of this trade-off with the loss weights λc and λs. The most obvious metrics
for content preservation and style alignment are the feature-based content loss
Lc and the style loss Ls. These metrics, however, might not be robust to op-
timization and, therefore, not give an objective assessment, especially as they
are highly dependent on the feature’s ability to correctly specify the content and
style. For a more intuitive metric of content preservation, we compare time series
trends via the mean square error between moving averages (MASE). We obtain
an unbiased assessment of style alignment with α-precision and β-recall scores
[26], which measure realism and diversity, respectively. Formally, the distribution
over our generated samples Q has precision α at recall β w.r.t. the true data
distribution P if there exists distributions νP , νQ, and µ such that

P = βµ+ (1− β)νP and Q = αµ+ (1− α)νQ.

Intuitively, the α-precision is the proportion of Q that can be explained by an
approximation of P whose quality increases as β increases. If α stays high for
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increasing values of β, this implies that Q can be represented well by P , i.e.,
the generated samples are realistic. Conversely, a high β-recall implies that P
can be represented well by Q, i.e., the generated samples are diverse. We find
estimates from samples by clustering the joint set of generated samples and style
samples and interpreting our distributions as distributions over class labels. As a
crude quantifier, we report the average precision and recall over all lines through
the origin. However, a visual inspection of the precision-recall curve remains
essential. We refer to [26] for details.

In addition, we assess the style quality through its indistinguishability from
real style samples. To this end, we train a classifier to distinguish between gen-
erated and real style samples. We fit a standard logistic regression model to half
of the validation set and report the accuracy and recall on the other half. For
stylized samples that closely resemble true style samples, the accuracy and recall
should be close to 50%. Low recall indicates high realism as the recall is related
to how many generated samples are mistaken for real ones. Lastly, we consider
the predictive utility on the style dataset. Following the TSTR (’train on syn-
thetic, test on real’) framework [13], we train a simple 2-layer LSTM to perform
a prediction task on the generated samples. If the trained model generalizes well
to the style data, this indicates high fidelity and utility as data augmentation.
We report the mean absolute error (MAE).

4.2 Toy data

Enhancing realism in simulation data is essentially equivalent to learning and
adding the realistic noise found in real data, attributable, for example, to mea-
surement error. We emulate a simple univariate case by modeling the simulation
data of interest as samples from a zero-mean Gaussian process,

x ∼ N (0,K), Kij = exp

(
− 1

2ρ2
|i− j|2

)
,

with RBF kernel of bandwidth ρ2 = 20. This gives us smooth and aperiodic
time series that still exhibit some complexity in their contents. We assume that
this perfectly models the underlying phenomena and experimental style samples
are thus obtained from the same distribution, only adding measurement error
modeled as Gaussian white noise with noise level σ2

s = 0.5, i.e.,

s = c+ n, c ∼ N (0,K), n ∼ N (0, σ2
sI).

Here, style and content are completely separable as they are independent. We
sample 50000 steps from the smooth and noisy Gaussian processes and split them
into overlapping chunks of length 256, reserving 10% as hold-out validation and
test sets. For completeness, we consider style transfer in both directions and train
our model twice, separately optimizing the hyperparameters. Tables 1 and 2 show
the quantitative evaluation of the style transfer task across all metrics. Figures
6a and 6b show the diversity-realism curves, and Figures 3 and 4 show randomly
selected samples. IDO performs well, as to be expected. It generates realistic,
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Fig. 3: Style transfer from smooth to noisy data, randomly chosen samples.
Our method successfully learns to add Gaussian noise.
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Fig. 4: Style transfer from noisy to smooth data, randomly chosen samples.
Our method successfully learns to remove Gaussian noise.
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Fig. 5: Style transfer from simulated to realistic data, randomly chosen samples.
Our method successfully replicates the spikes and characteristic noise of the style
samples, while preserving the original content.
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content style

Lc ↓ MASE ↓ Ls ↓ α∗ ↑ β∗ ↑ Acc ↓ Rec ↓ MAE ↓

IDO 3.88 · 10−2 0.64 6.69 · 10−4 71.02% 71.06% 50.5% 51.5% 6.95 · 10−1

DVAE 2.69 · 10−2 0.37 3.23 · 10−3 70.92% 70.92% 92.7% 88.9% 6.73 · 10−1

Table 1: Results on style transfer from smooth to noisy data, λs/λc = 10.

content style

Lc ↓ MASE ↓ Ls ↓ α∗ ↑ β∗ ↑ Acc ↓ Rec ↓ MAE ↓

IDO 2.63 · 10−2 0.40 4.38 · 10−4 71.03% 71.08% 52.6% 50.7% 1.10 · 10−1

DVAE 2.73 · 10−2 0.39 7.10 · 10−4 70.84% 70.91% 53.0% 55.8% 5.42 · 10−2

Table 2: Results on style transfer from noisy to smooth data, λs/λc = 10.

diverse, and indistinguishable time series, as indicated by high α-precision, high
β-recall, and accuracy close to 50%. Our method successfully produces samples
of similar high quality in a fraction of the time, with scores that are less than
0.5% lower. We note, however, that our method produces noisy samples that are
more distinguishable from style samples than the baseline. A visual inspection
of the generated time series in Figure 4 shows no obvious defects, so this may
be due to artifacts in the generated samples that are not visually distinct but
can be found by the classifier. This problem could potentially be tackled with
adversarial training techniques. Arguably, this is not a significant problem as
our generated samples still demonstrate high fidelity and high predictive utility,
in the latter even beating the iterative baseline.

4.3 Batch Distillation Data

We explore an application in chemical process engineering: batch distillation [27,
15, 3, 20]. In batch distillation, a mixture of two or more components is separated
into two or more products: distillate fractions and a bottom product or residue.
To this end, a batch of a liquid mixture is charged to a pot and heated until it
is boiling. The resulting vapor rises through a column and is condensed. A part
of this condensate refluxes into the column. The rest is drawn out to produce
a distillate. This is a non-stationary process, even for control inputs that are
chosen to be constant over time, as both the compositions of components and
temperature change over time. Here, we have access to two non-parallel datasets:
Simulation data and sensor data recorded in a real batch distillation plant. We
aim to enhance realism in the former by learning the style of the latter.

Simulation Data We consider a batch distillation column with S equilibrium
stages and a condenser above these stages. A schematic of the model is shown in
Figure 7a. The simulation model is described by the so-called MESH equations
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Fig. 6: α-Precision and β-Recall for different style transfer tasks, from a) smooth
to noisy toy data, b) noisy to smooth toy data, and c) simulated to realistic batch
distillation data. Our method (DVAE, in orange) closely matches the sample
quality of the iterative baseline (IDO, in blue).

[27, 3] on each stage of the batch distillation column, describing mass balances,
thermodynamic equilibria, summations, and enthalpy balances. We assume zero
vapor holdups on all stages, total condensation in the condenser, and that one
liquid and one vapor phase are in thermodynamic equilibrium with each other
at all stages at all times; in particular, we do not consider liquid-liquid equilibria
or all-liquid or all-vapor regimes. The resulting equations are a combination of
nonlinear differential and algebraic equations and, hence, constitute a system of
differential-algebraic equations [1, 22, 5]. We applied a suitable index reduction
and implemented the index-reduced version of the system of equations in Python
using the optimization modeling library Pyomo [4, 17], solved with Ipopt [32].

We generate 26 simulations with a mixture of acetone, methanol, and butanol,
setting S = 8. The simulations differ in the initial composition of the components
in the pot, and each simulation includes four signals (time series): The liquid
mole fractions for the three components and the temperature in the head of the
column. For an example simulation, refer to Figure 7b.

Experimental Data We conducted several distillation experiments with a
laboratory-sized batch-distillation plant. The plant is equipped with a glass pot
and a put-on glass column with a height of 150 cm. 27 sensors, including tem-
perature, pressure, level and flow sensors, as well as analytics of mixture com-
positions collect time-series data while conducting experiments. We performed
25 batch distillation experiments with mixtures of 1-butanol, 2-propanol, and
water with varying compositions, gathering data for 1000 to 10000 time steps.
The mixtures were heated, the uprising vapor was cooled down in a condenser
on top of the column, and a part of the vapor was collected as distillate. The
remainder refluxes into the column, enabling efficient separation of components.
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(a) (b)

Fig. 7: Schematic of a batch distillation column with S stages (a) and example
of simulated liquid mole fractions in the head of batch distillation column for a
mixture of acetone, methanol, and butanol (b).

content style

Lc ↓ MASE ↓ Ls ↓ α∗ ↑ β∗ ↑ Acc ↓ Rec ↓ MAE ↓

IDO 2.33 · 10−5 1.01 · 10−2 8.57 · 10−4 38.49% 28.46% 93.5% 90.5% 0.25
DVAE 1.74 · 10−5 7.91 · 10−3 9.25 · 10−4 34.79% 26.06% 93.3% 89.5% 0.25

Table 3: Results on style transfer from simulated to realistic data, λs/λc = 1.

Style Transfer Results To align the different datasets, we first remove the
trend by computing and removing a moving average and normalizing the time
series with that trend’s mean and standard deviation. After performing style
transfer on the normalized data, we undo normalization and re-add the trend of
the content sample. We split each time series into overlapping chunks of length
dlen = 64, reserving 10% of data as hold-out validation and test sets. Table 3
shows the quantitative evaluation of the style transfer task across all metrics.
Figure 6c shows the diversity-realism curve, and Figure 5 shows randomly se-
lected samples, with values normalized to a range between 0 and 1. In this more
complex setting, IDO still performs reasonably well. It captures the main dif-
ference between the two datasets, adding noise to the simulated temperature
values. Real sensors capture temperature data across finite values due to their
finite accuracy, resulting in time series with sudden jumps and spikes, which are
visible in the stylized samples too. Lower values for α-precision, β-recall, and a
higher accuracy indicate the increased complexity of this style transfer applica-
tion. Nonetheless, our method is again able to successfully produce samples of a
similar high quality in a fraction of the time.
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5 Related work

Thus far, the application of style transfer methods to time series has been limited.
Most approaches adopt feature-based methods from image style transfer, for
example, by directly transforming time series to images [28]. This approach is
limited to high-dimensional time series and restricts the class of learnable styles,
as features trained on image classification are not well-suited for most time series
applications. The choice of features in (6) is crucial. El-Lahman et al. [12] propose
using hand-crafted features, specifically designed for their finance application. Da
Silva et al. [7] use learned features that are obtained via a denoising autoencoder.
Both methods are model-free, iteratively optimizing a random initialization with
back-propagated gradients.

When samples of the target style are abundant, stylized time series may be
generated directly, for example, with VAEs [7, 10] or GANs [13, 35, 38]. This,
however, usually sacrifices control over the exact content. Control is maintained
when using an autoencoder with a disentangled representation, allowing for la-
tent swapping as described earlier. For high-dimensional time series such as video
and speech, disentanglement can be obtained with a Disentangled Sequential Au-
toencoder (DSAE) [34] that splits the time series into global information (style)
and time-dependent dynamics (content). If the dimension of the latent spaces are
chosen appropriately, a good reconstruction is only possible by storing the time-
invariant information in the latent space that encodes the global information,
permitting inference-time style transfer. In our case, this is not feasible because
even the smallest style latent space of size 1 might still not be restrictive enough
for the univariate or low-dimensional time series we work with.

6 Conclusion

In this paper, we have investigated the utility of neural style transfer methodol-
ogy to enhance realism in simulation data by learning the style of non-parallel
experimental data. Our proposed model-based style transfer framework is based
on loss-guided disentanglement and allows for fast real-time style transfer with-
out iterative optimization. We have shown the efficacy of our method, both
qualitatively and quantitatively, in a simplified synthetic setting and application
in batch distillation. Our method is able to correctly identify the correct notion
of style or realism and provide stylized reconstructions of data samples while still
preserving their contents. In both settings, we closely match the sample quality
of the iterative baseline that provides near-optimal solutions to the optimization
problem defining the style transfer task. We can do so with only one model call
to a small transformer model instead of many iterations of gradient descent per
generated sample, greatly improving utility as real-time data augmentation.
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