
A Benchmark Suite for Verifying Neural
Anomaly Detectors in Distillation Processes

Simon Lutz1, Justus Arweiler2, Aparna Muraleedharan3, Niklas Kahlhoff4,
Fabian Hartung5,6, Indra Jungjohann2, Mayank Nagda6, Daniel Reinhardt7,
Dennis Wagner6, Jennifer Werner8, Justus Will9, Jakob Burger3, Michael

Bortz8 Hans Hasse2, Sophie Fellenz6, Fabian Jirasek2, Marius Kloft6, Heike
Leitte7, Stephan Mandt9, Steffen Reithermann6, Jochen Schmid8, and Daniel

Neider10

1 Member of the Research Center "Trustworthy Data Science and Security" of the
University Alliance Ruhr, TU Dortmund University, Germany

2 Laboratory of Engineering Thermodynamics, University of Kaiserslautern-Landau
3 Chemical Process Engineering, Technical University of Munich

4 TU Dortmund University
5 Gas Treatment Technology, BASF SE Ludwigshafen

6 Machine Learning Group, University of Kaiserslautern-Landau
7 Visual Information Analysis, University of Kaiserslautern-Landau

8 Fraunhofer Institute for Industrial Mathematics ITWM
9 University of California, Irvine

10 Professor for Verification and Formal Guarantees of Machine Learning, Research
Center "Trustworthy Data Science and Security" of the University Alliance Ruhr, TU

Dortmund University, Germany

Abstract. Inspired by the success of machine learning in other domains,
the application of AI in the field of chemical process engineering has in-
creased in recent years. While neural networks often show paramount
performance, they are error-prone in general which is particularly prob-
lematic when employed in safety-critical applications, such as chemical
plants. This has given rise to the development of verification techniques
for neural networks, which aim to autonomously verify (i.e., to mathe-
matically prove) that a neural network fulfills a set of correctness prop-
erties, thus that it is safe and reliable. However, there is no general
definition for safety and reliability of neural networks. In this paper, we
start bridging this gap by introducing a benchmark suite for verifying
neural networks used to detect anomalies in distillation processes. With
this benchmark suite we aim at confronting existing verification methods
with complex, ’real-life’ properties and thereby foster new advances in
the field of neural network verification.

Keywords: Verification of Neural Networks, Benchmark Suite, Distil-
lation Process

2 Lutz et al.

1 Introduction

Chemical process engineering is a field of research which investigates material
conversion through chemical reactions and how results can be scaled-up from a
laboratory level to industrial production processes. This research often includes
building and running large pilot plants to experiment with different setups and
hyperparameters, to observe the chemical processes under ’real-life’ conditions,
and to check the safety and reliability of the plant. The success of machine
learning in other domains - where it even outperforms human experts - has led
to increased use of AI in the field of chemical process engineering as well. One
prominent application is anomaly detection, i.e., finding behavior which diverges
from the norm. For instance, an anomaly detector could be used as part of the
controlling software of a (autonomous) chemical plant or factory to trigger an
alarm whenever the system has a malfunction or exhibits unforeseen behavior.

While neural networks show paramount performance in many anomaly de-
tection tasks, they are error-prone in general [10], which is particularly problem-
atic when deployed in safety-critical applications, such as chemical plants. For
instance, unreported anomalies may result in imminent hazards to the environ-
ment and harm of human life. In contrast, false alarms may lead to substantial
financial or scientific loss due to unnecessary downtime of a plant.

The desire of exploiting the capabilities of neural networks even in safety-
critical applications has given rise to an increasing demand for methods that can
ensure the safety and reliability of neural networks or provide formal guarantees
on their behaviour. Inspired by methods from traditional software verification,
this led to the development of a variety of verification techniques for neural
networks in recent years (see the section on related work for a brief overview).
Given a neural network, these methods aim to autonomously verify (i.e., to
mathematically prove) that the neural network fulfills a set of correctness prop-
erties, ensuring that it is safe and reliable. However, there is no general definition
for safety and reliability of neural networks. Hence, most research in this field
focuses on a correctness property called adversarial robustness, i.e, the ques-
tion whether small perturbations of an input can lead to drastic changes in the
output. While this is an important property many neural networks lack in gen-
eral even when they have a really high prediction accuracy, it is insufficient in
ensuring the safety and reliability of complex chemical plants.

In this paper, we start bridging this gap by introducing a benchmark suite
for neural network verification tools. With this benchmark suite we aim at con-
fronting existing verification methods with complex, ’real-life’ properties and
neural networks trained on time series data. As most of the existing verifica-
tion methods were developed for simple specifications and feed-forward networks
trained on non-sequential data, this provides crucial insights on how state-of-the-
art techniques are suited for verifying such ’real-life’ problems and will thereby
foster new advances in the field of neural network verification.

Our benchmark suite consists of two parts: First, a set of neural networks
trained for anomaly detection in the context of distillation processes. Second,
a novel set of correctness properties, also called specifications, which we derive

A Benchmark Suite for Neural Network Verification 3

from chemical and physical laws. The tasks of the verification tools will then be
to verify that the neural networks do or do not satisfy a given property. This
benchmark is publicly available 11.

The outline of our paper is as follows. Next, we will review related work in
the field. Afterwards, we will introduce the basic concepts and definitions used
throughout the paper in Section 2. We will introduce the distillation processes we
consider and the plants we use for our experiments in Section 3. Next, we will give
an overview on the neural networks we trained based on our experimental data
in Section 4. In Section 5, we will formally introduce our correctness properties
before combining them with the neural networks to our benchmark suite in
Section 6. We conclude with a discussion and an outlook for future work in
Section 7.

Related Works

In recent years, the general topic of verifying neural networks has started to
receive increasing attention. This has sparked the development of a plethora of
neural network verification tools (e.g., [14, 4, 7, 8]). Many of them however,
remained short-lived as they were quickly outperformed by more efficient imple-
mentations or more advanced verification techniques. Modern state-of-the-art
verification tools, such as α-β-CROWN [20], Marabou [11], and PyRAT [2], of-
ten rely on a hybrid approach, efficiently combining ideas from multiple methods.

Initially conceived as a friendly competition among researchers in 2020, the
Verification of Neural Network Competition (VNN-COMP) [1] started as an
annual event. Its goal is to bring the neural network verification community
together to foster new advances in the field and aid the development of more
efficient verification techniques. For instance, this has led to the definition of
standardized formats for neural networks (ONNX) and specification (VNN-LIB)
in verification benchmark suites. Furthermore, it facilitates a fair and objec-
tive comparison of state-of-the-art neural network verification tools on cost-
equivalent hardware.

To support the VNN-COMP endeavours, many free and publicly available
benchmark suites have been proposed to be included in the competition. They
include benchmarks for verifying adversarial robustness in different safety critical
applications such as traffic signs recognition [17] or condition-based maintenance
for aircrafts [12]. Furthermore, they include benchmarks targeted at specific,
yet unsupported properties to foster development of new techniques in that
direction. These properties include scaling up verification to large networks or
robustness of transformer models [19].

Our benchmark suite differs from the existing ones by being, to the best of our
knowledge, the first benchmark arising from specifications and data from the field
of chemical process engineering. As it contains networks trained on time-series
data and specifications containing temporal relations, it poses a new challenge of
11 https://github.com/simonlutz-tudortmund/Benchmark-Suite-for-Verifying-Neural-

Anomaly-Detectors-in-Distillation-Processes

https://github.com/simonlutz-tudortmund/Benchmark-Suite-for-Verifying-Neural-Anomaly-Detectors-in-Distillation-Processes
https://github.com/simonlutz-tudortmund/Benchmark-Suite-for-Verifying-Neural-Anomaly-Detectors-in-Distillation-Processes

4 Lutz et al.

φpre, φpost

Verification Engine

“yes”

“no”

property P as
logic constraint

network N under
verification

Fig. 1. Verification of Neural Networks

efficiently verifying temporal properties. Furthermore, our specifications derived
from chemical and physical laws go beyond the existing, often less complex
correctness properties.

2 Preliminaries

In this section, we recapitulate basic notation and introduce definitions used
throughout the paper. We start with a brief introduction to the verification of
neural networks. Afterwards, we introduce three logical frameworks by defining
the syntax and semantics of propositional (Boolean) logic, the First-Order theory
of Linear Real Arithmetic, and Linear Temporal Logic (LTL). The latter two will
constitute the foundation for the specification language we introduce in Section
5 to formalize our novel set of correctness properties.

2.1 Verification of Neural Networks

While a variety of different verification techniques have been developed in recent
years, the general idea is always the same: Given a neural network and a correct-
ness property, a verification engine will compute a formal (i.e., mathematical)
proof to show that the network does or does not fulfill the given property (see Fig-
ure 1). In order to compute this proof fully automatically, the verification engine
requires the correctness property to be provided in a computer-understandable
format. Therefore, a common way is to express this property as a set of two con-
straints in a suitable logical specification language. The first constraint, referred
to as precondition, typically describes the inputs for which we want to prove
correctness. The second constraint, referred to as postcondition, then defines the
actual property to check. For a more detailed introduction to the verification of
neural networks, we refer interested readers to [3].

At this point it is important to stretch that verification of neural networks is
orthogonal to the common approach for quality assurance in machine learning.
Typically, a neural network is trained on a set of training data and afterwards
validated against a large but finite set of unseen test data. The performance of the
network is then defined based on the number of test data on which the network
predicted the correct outcome. In contrast, verification of neural networks allows
us to symbolically argue about an infinite set of inputs, thus providing definitive
guarantees on the correctness of the network.

A Benchmark Suite for Neural Network Verification 5

2.2 Propositional Boolean Logic

In the upcoming sections, we introduce three logical frameworks which build
the foundation for or can serve as a suitable specification language for formaliz-
ing correctness properties for the verification of neural networks. We start with
propositional Boolean logic as it is one of the most important concepts in theo-
retical computer science and the base for both of the subsequent formalisms.

Propositional (Boolean) Logic is a mathematical formalism which allows rea-
soning about propositions (i.e., statements that are either true or false) and their
(logical) relations. In order to formally introduce propositional Boolean logic we
use a standard notation of computer science by first introducing its syntax, i.e.,
describing how to build formulas in the formalism. Afterwards, we introduce the
semantics of a formula, i.e., its meaning.

The syntax of a formula in propositional logic is defined by the following
inductive definition:
Let V ar be a set of propositional variables. Then

– each x ∈ V ar is a formula;
– if Φ and Ψ are formulas, then so are ¬Φ, Φ ∨ Ψ , and Φ ∧ Ψ

Furthermore, we can also add the formulas True, False, Φ → Ψ , and Φ ↔ Ψ as
syntactic sugar. After defining the syntax we will then define the semantics of
propositional logic. An interpretation I is a function I : V ar 7→ {0, 1} assigning
each variable the value True (1) or False (0). The semantics of a formula in
propositional logic is given by a satisfaction relation |=, a binary relation between
interpretations and formulas. Intuitively, this relation indicates whether a certain
assignment of truth values results in the formula evaluating to true or false.
The satisfaction relation |= can also be defined inductively following the syntax:
I |= x ⇔ I(x) = 1, I |= ¬Φ ⇔ I ̸|= Φ, I |= Φ ∨ Ψ ⇔ I |= Φ or I |= Ψ , and
I |= Φ∧Ψ ⇔ I |= Φ and I |= Ψ . Following their usual definitions, the semantics
can also be extended to the formulas Φ → Ψ = ¬Φ ∨ Ψ , and Φ ↔ Ψ = (Φ →
Ψ) ∧ (Ψ → Φ). We say I satisfies Φ if I |= Φ and we call I a model of Φ in that
case. In the case that there exists a model I for a formula Φ, we call Φ satisfiable.

While propositional logic allows the reasoning about boolean propositions,
this is not sufficient to formalize meaningful safety properties for chemical pro-
cesses. On the one hand, our data takes on real values, not just propositions
True and False. On the other hand, we consider time series data which also
contains temporal relations which cannot be expressed using Boolean operators
alone. Therefore, we will consider two extensions of propositional logic which
handle real-valued inputs and temporal relations. In Section 5 we will then com-
bine these two to define our specification language for formalizing correctness
properties.

2.3 Linear Real Arithmetic

For handling real-valued inputs, we consider the quantifier-free fragment of the
First-Order theory of Linear Real Arithmetic (LRA). To a certain extend, LRA

6 Lutz et al.

can be seen as an extension of propositional Boolean logic by real-value inputs
and basic arithmetic operators. Again, we start by defining the syntax of Linear
Real Arithmetic. Before defining a formula in Linear Real Arithmetic, we first
introduce the concept of a term, a basic building block of a formula. Let V ar be
a set of real-valued variables, c ∈ R be a real-valued constant, and t1 /t2 be two
terms. Then

t ::= x ∈ V ar | c | c · t1 | t1 + t2

is a term in Linear Real Arithmetic. Based on this definition, we define a formula
in Linear Real Arithmetic as follows: Let t1 /t2 be two terms and Φ1/Φ2 be two
formulas. Then

Φ ::= t1 = t2 | t1 < t2 | ¬Φ1 | Φ1 ∨ Φ2

is a formula in LRA.
Furthermore, we allow the arithmetic relations t1 ◦ t2 with ◦ ∈ {̸=,≤, >,≥}

and the boolean combinations True, False, Φ1 ∧ Φ2, Φ1 → Φ2, and Φ1 ↔ Φ2 as
syntactic sugar.

After defining the syntax we will now define the semantics of LRA similar
to propositional logic. An interpretation I is a function I : V ar → R assigning
each variable a real value. This interpretation can then be lifted to terms as
follows: Let c ∈ R be a real-valued constant and t be a term. Then I(c) = c,
I(c·t) = c·I(t), and I(t+t′) = I(t)+I(t′). The semantics of a formula in Linear
Real Arithmetic is given by a satisfaction relation |=, a binary relation between
interpretations and formulas. This relation can also be defined inductively fol-
lowing the syntax: I |= t = t′ ⇔ I(t) = I(t′), I |= t < t′ ⇔ I(t) < I(t′),
I |= ¬Φ ⇔ I ̸|= Φ, and I |= Φ ∨ Ψ ⇔ I |= Φ or I |= Ψ . Following their
usual definitions, the semantic can also be extended to the formulas t ◦ t′ with
◦ ∈ {≠,≤, >,≥}, Φ1∧Φ2, Φ1 → Φ2, and Φ1 ↔ Φ2. We say I satisfies Φ if I |= Φ
and we call I a model of Φ in that case. In the case that there exists a model I
for a formula Φ, we call Φ satisfiable.

2.4 Linear Temporal Logic

To handle temporal relations in our correctness properties we rely on Linear
Temporal Logic (LTL) [16] which extends propositional logic by a set of tem-
poral operators. Similar to propositional logic the syntax can be defined by an
inductive definition: Let V ar be a finite, nonempty set of propositional variables.
Then

– each variable x ∈ V ar is an LTL formula;
– if Φ and Ψ are formulas, so are ¬Φ, Φ ∨ Ψ , XΦ (“next”), and ΦUΨ (“until”)

As in the case of propositional logic we can add the formulas True, False, Φ∧Ψ ,
Φ → Ψ , and Φ ↔ Ψ as syntactic sugar. Furthermore, we can also add the
temporal operators FΦ (“finally”) and GΦ (“globally”). In contrast to propo-
sitional logic, formulas in linear temporal logic are interpreted over (infinite)
sequences w ∈ (2V ar)ω of sets over the variables. Intuitively, each position of the

A Benchmark Suite for Neural Network Verification 7

sequence describes the set of variables which are True at this point in time.
The semantics of LTL is also defined by the means of an interpretation I. In
the context of LTL, an interpretation is a function I : (Φ,w) 7→ {0, 1} map-
ping pairs of LTL formulas and infinite sequences to Boolean values. With Φ
and Ψ being formulas in Linear Temporal Logic, this function is inductively
defined by: I(x,w) = 1 ⇔ x ∈ w0 for x ∈ V ar, I(¬Φ,w) = 1 − I(Φ,w),
I(Φ∨Ψ,w) = I(Φ,w) or I(Ψ,w)}, I(XΦ,w) = I(Φ,w[1,∞)), and I(ΦUΨ,w) =
maxi≥0{min{I(Ψ,w[i,∞)),min0≤j<i{I(Φ,w[j,∞))}}}, where w0 describes the
first position of a sequence w and w[i,∞) describes the sequence w but start-
ing at position i. Following the syntax this definition can be also extended to
the formulas True, False, Φ ∧ Ψ , Φ → Ψ , FΦ := TrueUΦ, and GΦ := ¬F(¬Φ).
Intuitively, the temporal formula XΦ encodes that the formula Φ needs to hold
at the next position in time. Furthermore, the formula ΦUΨ encodes that at
some point in the future the formula Ψ needs to hold and on every point until
then the formula ϕ holds. Moreover, the formulas FΦ and GΦ indicate that Φ
needs to hold at some or all points in time, respectively. We say w satisfies Φ if
I(Φ,w) = 1 and call I(Φ,w) the interpretation of Φ under w.

3 Data Generation and Experimental Setup

In this work we focus on verifying anomaly detectors for distillation processes.
Simplified, distillation is a chemical processes which uses a so-called distillation
column to separate a liquid mixture into multiple, possibly unknown chemical
components. In the distillation column, the liquid mixture is heated up in the
distillation still, a vessel connected to a heat source. When the temperature ex-
ceeds the boiling temperature of the lowest boiling component in the mixture it
starts to vaporize. The resulting vapor rises up through the rectifying column,
containing a sequence of packings or plates, until it is condensated in the con-
denser at the top of the column. The condensate is cooled and split into two
separate streams; a part of the condensate is withdrawn as distillate while the
other, often larger fraction of the condensate called reflux is returned to the col-
umn top. There, the countercurrent of downflowing liquid and uprising vapor is
constantly in contact, enabling a mass transport between the phases improving
the separation of the components in the mixture [5]. By adjusting, e.g., pres-
sure, temperature and ratio of withdrawn distillate, the purity of the distillate
or residue can be influenced in the process.

In chemical engineering one typically distinguishes between continuous and
discontinuous processes. In continuous processes the plant usually operates non-
stop, meaning 24 hours per day, seven days per week, and is only interrupted
for maintenance. These plants are widely used in the chemical industry, e.g.,
petrochemical industry, as they are flexible large-scale, highly efficient, and cost-
effective solutions to consistently produce large product volumes. In contrast,
discontinuous, or batch, processes run only for a certain time frame. Such pro-
cesses are in general used for small-scale production units with high product-
quality requirements, e.g. in pharmaceutical or bio-chemical industries, as well

8 Lutz et al.

as in scale-up studies. Batch processes are widely adaptable to many process
requirements and are not fixed to a single operating point. Their dynamic, thus
flexible, nature allows for swift reaction to unexpected process behavior.

In our work, we consider both a discontinuous, batch distillation process and
a continuous distillation process. In the following, we will describe the plants we
use, the setup for collecting data, and the experiments we conducted12.

3.1 Setup of the Batch Distillation Plant

The experimental data was collected using a multi-stage batch distillation unit of
the type LM 2/S provided by Iludest® (ILUDEST Destillationsanlagen GmbH,
Waldbüttelbrunn, Germany). The batch distillation plant is a combination of a
heated round-bottom flask with a volume of V = 2 L with a put-on glass rectify-
ing column. The rectifying column consists of 3 sections with a length of 50 cm
each and an inner diameter of 50 mm. Each column section contains structured
laboratory packing of the type Sulzer DX30 (Sulzer, Winterthur, Switzerland).
The sections as well as the upper hemispherical part of the bottom flask, are
equipped with a glass fibre-insulated heating jacket to supply additional heating
for the minimization of heat losses and the establishment of a quasi-adiabatic
process environment. An image of our batch distillation plant is displayed in
Figure 2.

Fig. 2. Our discontinuous, batch distillation plant at the University of Kaiserslautern-
Landau used to generate the data

The distillation plant is rigged with a plethora of sensors. Temperatures are
measured at the bottom of each column section, as well as in the reboiler and
at the top of the column; moreover, the temperatures of the heating jackets are
12 We will also make this experimental data publicly available.

A Benchmark Suite for Neural Network Verification 9

monitored at all times. At the top of the column, a condenser is installed to
condensate the uprising vapor. The reflux ratio, another important parameter
controlling the operating point of the plant [18], is set using two pumps situated
downstream of the condenser, whereas one pump controls the distillate flux and
the other the reflux into the plant, which are also measured. The batch distil-
lation plant operates under vacuum conditions; the internal pressure is thereby
measured at the top of the column. Moreover the differential pressure between
condenser and bottom still is measured. In addition, the system is connected to
a benchtop nuclear magnetic resonance (NMR) spectroscope of the type Spin-
solve 80 ULTRA Carbon (Magritek, Aachen, Germany) to measure distillate and
residual compositions. In addition to the NMR device, samples are drawn from
bottom still and distillate receiver in discrete time intervals to allow composition
measurements with gas chromatography.

Experiments For distillation experiments, a feed mixture of 50 mol-% 2-
propanol, 25 mol-% 1-butanol and 25 mol-% water is supplied in the bottom
still of the batch distillation plant. The feed mixture is heated under set vacuum
conditions, the uprising vapor is condensed and a part of that condensate is
removed as distillate, while the remains flow down though the column into the
bottom still. This process is maintained until 500 ml of distillate were drawn
in each experiment. During operation of the batch-distillation plant, all sensors
and actors mentioned above are monitored and recorded by the process control
software. As anomalies are rare in the normal operation of an experiment and
could cause real danger if undetected, we introduced them in a controlled and
clearly-defined manner. We started by reviewing literature on the most common
process anomalies from real-life processes to support the optimal selection of
recreated anomalies [13]. Based on that review, a location of attack was defined
in the process - either a certain control loop, sensor or component of the plant.
Then, for a short window of time (about 10 minutes) during an experiment, we
introduced a fault into the process, for instance, a leakage, a sealing failure, or
a control setting deviating from normal behavior.

3.2 Setup of the Continuous Distillation Plant

Our continuous distillation plant has a feed capacity of 5 tons per annum (t/a)
and comprises two distillation columns – a steel column (DN70 specification), a
glass column (DN50 specification) and a decanter vessel. The plant is manufac-
tured by Iludest® (ILUDEST Destillationsanlagen GmbH, Waldbüttelbrunn,
Germany) and both the columns have packing manufactured by Sulzer (Sulzer,
Winterthur, Switzerland). An image of our continuous distillation plant is dis-
played in Figure 3. This intricate system has 49 sensors, including tempera-
ture, pressure, flow, level sensors, and mass scales. They are all connected to
LabVIEW, our primary tool for data collection and controlling of the plant.
In addition to these sensor readings, we conduct offline analyses such as gas
chromatography (GC) and nuclear magnetic resonance (NMR) to determine the
composition of components at different stages of the column.

10 Lutz et al.

Fig. 3. Our continuous distillation plant at the Technical University of Munich used
to generate the data

Experiments In our experiments, chemical systems of increasing complexi-
ties were implemented in the plant. We started with a single-component water
system and one distillation column. For this system, continuous experimental
data was generated for 30 days, at operating pressures between 1 bar to 1.4 bar.
Afterwards, a hetero-azeotropic binary system of n-butanol and water is used
to run the plant, involving two columns and a decanter. This system involves
an azeotrope formation and two liquid phases separated using the decanter. We
experimented with different feed concentrations, ranging from 90 to 98 % water
and 10 to 2% n-butanol, respectively. This feed is continuously fed into the first
column, where the bottom product is expected to be pure water and the con-
densate at the top from the first column is an azeotrope which is collected in
the decanter. This has two liquid phases, from which the lighter phase or the n-
butanol rich phase is fed into the second column at the top stage. The heavier or
water rich phase is fed back into the first column as reflux. The bottom product
of the second column is expected to be pure n-butanol and the top product is
an azeotrope which is also fed into the decanter. Both the columns are operated
at atmospheric pressure and data is generated every 30 seconds with and with-
out anomalies. Similar to the experiments with the batch distillation plant, we
manually introduced anomalies inspired by anomalies from real-life processes.
These anomalies include faulty sensor readings, pipe clogging, catalyst deacti-
vation, feed irregularities, and level discrepancies. For instance, we reproduced
pipe clogging by manipulating some of the hand valves, thereby restricting the
flow.

A Benchmark Suite for Neural Network Verification 11

4 Neural Networks for Anomaly Detection

In this section, we introduce the neural networks we trained on our experimental
data to detect anomalies in continuous and discontinuous distillation processes.
At this point, it is important to point out that these networks are not trained
to achieve state-of-the-art performance but to serve as part of a benchmark
suite for neural network verification. This implies that the networks are much
smaller and trained with a much simpler architecture than widely used anomaly
detectors such as long short term memory networks (LSTMs) [15] or genera-
tive adversarial networks (GANs) [9]. This restriction is due to the (yet) limited
support of neural network verification tools which often support only fully con-
nected neural networks with piecewise linear activation functions. However, this
benchmark can easily be extended to adapt to future advances in the field and
the development of new verification techniques.

For both continuous and discontinuous distillation processes we trained six
different networks varying in size and the amount of data they where trained on.
In general all networks follow the same simple architecture: They expect a multi-
modal time series of fixed length as input and predict for the last point of the
series whether it is an anomaly or not, indicated by one of two output neurons
being active. In the hidden layers, the networks consist of a fully connected
architecture with ReLU activation functions.

In order to compile a benchmark suite with varying difficulty we trained our
networks to detect anomalies in different amounts of sensor readings. Therefore,
we trained our most simple anomaly detectors just on a single measurement, the
absolute pressure at the top of the packings column. For the next set of anomaly
detectors, we increase the amount of sensor readings to four, for instance includ-
ing temperature readings in the column. Then, the last anomaly detectors are
trained on the full set of sensor readings including all 34 (batch) and 49 (contin-
uous) sensors, respectively. In addition to varying amounts of sensor readings,
we also trained anomaly detectors of two different sizes. The first set of anomaly
detectors was trained with just two hidden layers consisting of 512 neurons each.
In the second set, we increased both the number of hidden layers (to four) and
the number of neurons per layer (to 1024).

5 Defining Specifications for Distillation Processes

In this section, we introduce the novel set of correctness properties we included
in our verification benchmark. We start with an overview of the origin of these
specifications, provide some examples and briefly discuss similarities and differ-
ences between properties for batch vs. continuous distillation. Then, we formally
introduce the specification language we use for formalizing the correctness prop-
erties and provide some example specifications. In the end, we conclude with a
discussion on the limitations of the VNN-LIB format, currently used for such
verification benchmarks, and how to overcome some of them in our specific ap-
plication.

12 Lutz et al.

5.1 Specifications for Distillation Processes

For many decades, researchers in the field of chemical process engineering have
studied distillation processes and developed a detailed understanding of the
chemical and physical laws influencing these processes. This allows them to
formally and accurately describe the expected, thus normal, behaviour during
operation of a chemical plant. We exploit this rich domain knowledge to develop
correctness properties for anomaly detectors. In a nutshell, our specifications en-
code that whenever a chemical or physical law is violated the anomaly detector
should predict an anomaly. This allows the specifications to function as a sanity
check for the neural anomaly detectors, ensuring that the models are at least
conform with the physical and chemical laws.

Note that the output of the anomaly detector is always the same for all our
specifications (it predicts an anomaly, if a chemical or physical law is violated).
Therefore, we will, for now, focus on just specifying the chemical and physical
laws. We will later see how to also express the behaviour of the neural network.

We can categorize our specifications into four sets: The first set consists of
specifications which define a certain bound on the measurements, for instance,
“The pressure must always be greater than zero”, “The measured amount of a
substance (i.e., its concentration) must always be greater than or equal to zero”,
or “The temperature in the plant must not exceed a certain threshold T ” (this
threshold may vary from plant to plant). The second set of specifications defines
relations between two measurements, either of different sensors or at different
points of time. These include properties like “The temperature has to decrease
from the bottom of the packing column to the top”, “The composition of the
low boiler must be higher at the top of the column compared to the bottom”
(for zeotropic mixtures), or the balance equation, i.e., “The sum of the concen-
trations of all substances in the mixture cannot exceed one”. While the above
properties hold for all distillation processes, due to their different nature there
are also properties which only hold for continuous or discontinuous processes.
Our third and fourth set of constraints therefore contain the specifications which
exclusively hold for continuous and discontinuous processes, respectively. They
include, for instance, “In steady state, all of the process variables (temperature,
pressure, concentrations, and flow rates) remain constant over time” (exclusive
for continuous distillation) or “The temperature in the distillation still increases
over time” (exclusive for batch distillation). To not clutter this section too much
we omit presenting the full list of specifications at this point and refer interested
readers to the appendix.

5.2 A Specification Language for Neural Networks Trained on Time
Series Data

In order to verify that a neural network fulfills the specifications defined above,
we need to transform them from natural language to a representation an au-
tonomous verifier, i.e. a computer program, can interpret and process. A closer
inspection of the specifications shows that we need to express constraints and

A Benchmark Suite for Neural Network Verification 13

bounds on real-valued variables, for instance, the value of a temperature sensor.
Furthermore, we need to be able to relate measurements of different points in
time and formalize that a property has to always hold, thus temporal behav-
ior. To capture both these properties, we rely on a combination of Linear Real
Arithmetic and Linear Temporal Logic when formalizing the specifications.

As for the logical frameworks introduced in Section 2, we first define the
syntax of our specification language. We start by defining the concept of a term,
a building block for our formulas. Let V ar be a set of real-valued variables, c ∈ R
be a real-valued constant, and t1 /t2 be two terms. Then

t ::= x ∈ V ar | c | c · t1 | t1 + t2 | ∼○x

is a term in our specification language. Intuitively, this just extends the notion
of terms in Linear Real Arithmetic by the new function ∼○x. Based on this
definition, we define a formula in our specification language as follows: Let t1
/t2 be terms and φ1/φ2 be formulas. Then

φ ::= t1 = t2 | t1 < t2 | ¬φ1 | φ1 ∨ φ2 | Xφ | φUψ

is a formula in our specification language. Note that we denote formulas in our
specification language by small Greek letters to differentiate them from formulas
in another logical formalism. After defining the syntax, we will define the seman-
tics of our specification language next. Similar to Linear Temporal Logic, our
specifications are interpreted over sequences, but over sets of real values (instead
of sets of propositions). Intuitively, one of these sets represents the sensor values
at a specific point in time. The semantics of our specification language is defined
by means of an interpretation I. In the context of our specification language,
an interpretation is a function I : (φ,w) → {0, 1} mapping pairs of formulas
and sequences to Boolean values. This function is inductively defined following
the usual definitions for boolean connectives ¬ and ∨, temporal operators X
and U, and arithmetic functions and relations +, ·,=, and <. The function ∼○x
will refer to the value of a variable at the following position of a sequence, i.e.,
I(∼○x, w1, . . . , wn) = w2.

After introducing the specification language we will now display the formal
representation of some of our specifications. Recall that we place numerous sen-
sors along the distillation column measuring, for instance, temperature, pressure,
or concentration of a component s. In the following, we will denote them by ti,
pi, and csi , respectively. The index will indicate the position of the sensor within
the column where the sensor x0, for x ∈ {t, p, c}, is placed at the bottom and
the sensor xnx is placed at the top of the packings column. For simplicity, the
upcoming examples assume a plant with a single packings column. We can ex-
tend them to multiple columns in a straightforward way by using superscripts
x1 and x2 to differentiate between senors in different columns. To not clutter
this section too much we will only display a two example specifications and refer

14 Lutz et al.

interested readers to the appendix for the full list.

informal: The pressure must always be greater than zero.

formal: G(

np∧
i=0

pi > 0)

informal: The temperature has to decrease from the bottom of the
packings column to the top

formal: G(

nt−1∧
i=0

ti > ti+1)

After describing how we can formulate chemical and physical laws in our
specification language, we will now explain how we can also formalize full spec-
ifications. Recall that we want to express properties of the form “whenever a
chemical or physical law is violated the anomaly detector predicts an anomaly”.
Let φ be a formula defining a specific chemical or physical law. Then we can
formalize the above correctness property as

¬φ→ N(−→x) = 1

where N(−→x) = 1 denotes that the neural network outputs “anomaly” on the
given input −→x .

5.3 Specifications for our Benchmark Suite

In the previous section, we introduced our specification language for formalizing
chemical and physical laws in continuous and discontinuous distillation processes.
While this specification language allows us to express a large and meaningful set
of correctness properties, most of the neural network verification tools today are
not yet designed to verify temporal properties. Instead, they rely on specifica-
tions provided in the VNN-LIB format [6], an initial attempt for standardizing
the description of neural networks and specifications for verification. So far, this
format only supports specifications defined in Linear Real Arithmetic. While
this is a issue when considering correctness properties which include temporal
behaviour, we can overcome this restricting in our specific application. Recall
that our neural networks require an input of a fixed input length (typically the
values of the last k measurements). We can exploit this fact to transform our
temporal constraints into specifications only expressed in Linear Real Arith-
metic. Towards this goal, we introduce a real-valued variable xji for every sensor
xi and every time point in our fixed input length. Intuitively, this variable xji
will then store the measurement of sensor xi at time j. This allows us to model
temporal behaviour by explicitly referencing the corresponding variables. For
instance, we transform the specification stating that “The pressure must always
be greater than zero” into the following constraint in LRA:

G(

np∧
i=0

pi > 0) ⇒
k∧

j=1

np∧
i=0

pji > 0

A Benchmark Suite for Neural Network Verification 15

6 Compiling the Benchmark Suite

In this section, we introduce the benchmark suite for neural network verifica-
tion tools we compiled by combining the neural networks we trained on our
experimental data and the specifications we elicited from chemical and physical
laws. Every instance in the benchmark suite will consist of a neural network
and a correctness property. The task of the verification tool is to verify whether
the given network does or does not fulfill the respective property. To make this
benchmark as accessible as possible, we will use the standardized formats for ver-
ification benchmarks and represent the neural networks and the specifications in
the ONNX and VNN-LIB file format, respectively. Furthermore, this benchmark
suite is publicly available and we will propose to include it in further iterations
of the Verification of Neural Network Competition.

In order to provide a more detailed insights into the state of the art of ver-
ifying temporal properties and to better monitor future advances, we propose
a benchmark suite including instances of varying difficulty. On the one hand,
this is achieved by including neural networks of different size and input (see
Section 4). On the other hand, we will also provide a simplified version of the
specifications discussed in Section 5. To provide an example of such a simplified
specification, consider the physical law stating that “The pressure must always
be greater zero”. Then, this law is violated whenever an input sequence contains
a nonpositive pressure measurement (e.g., due to a sensor malfunction). This can

easily be expressed in our specification language using the constraint
np∨
i=0

pi ≤ 0.

However, this implies that the nonpositive value can occur at every position in
the sequence, resulting in a very large search space. One possible way of sim-
plifying this specification could be to specify the exact position in the sequence
where the negative occurs (e.g., p4 ≤ 0) or even simpler to constrain the input
to have a specific negative value at a certain position (p4 = −0.53). Note that
the search space is still infinite in the first case but easier to traverse by the ver-
ification tool. The benchmark suite will then contain every suitable combination
of network and (simplified) specification together with the expected outcome of
the verifier.

7 Conclusion and Future Work

In this work, we introduced a benchmark suite for verifying neural anomaly
detectors in distillation processes. This benchmark suite consists of a set of
neural networks trained to detect anomalies in time-series data collected from
continuous and discontinuous distillation processes. Furthermore, it consists of a
novel set of correctness properties derived form chemical and physical laws which
need to be fulfilled during the normal, fault-free operation of a distillation plant.
With this benchmark suite we aim at confronting existing verification methods
with complex, ’real-life’ properties and will thereby foster new advances in the
field of neural network verification.

16 Lutz et al.

As part of future work, we plan to extent this benchmark suite in three di-
rections. First, we plan to add additional neural networks to the benchmark
suite including more sophisticated techniques and state-of-the-art architectures.
As most verification tools only support a restricted set of neural network archi-
tectures, these methods could give a direction for future advances in the field
and the development of novel verification techniques. Second, we will investi-
gate more expressive specification languages. While our specification language
is able to formalize a wide variety of correctness properties, it is restricted to
specifications which can be expressed as linear constraints. As some chemical
and physical laws in a distillation process are highly non-linear in nature, this
may not be sufficient to formalize them all, thus requiring a more expressive
specification language. In this regard, we will need to carefully investigate the
algorithmic properties of such a more expressive specification language as there
is a trade-off between the expressiveness of a logic and its algorithmic properties
in general. This could render the verification task to become infeasible. Last, we
plan to continue the process of eliciting and formalizing correctness properties
for other chemical processes besides continuous and discontinuous distillation.
This will foster the development of novel verification techniques and ultimately
ensure the safety and reliability of neural networks used in chemical process
engineering.

Acknowledgements This work has been financially supported by Deutsche
Forschungsgemeinschaft, DFG Project number 459419731, and the Research
Center Trustworthy Data Science and Security (https://rc-trust.ai), one of the
Research Alliance centers within the UA Ruhr (https://uaruhr.de).

References

1. 5th international verification of neural networks competition (vnn-comp’24) web-
site, https://sites.google.com/view/vnn2024 [Accessed: June 22nd, 2024]

2. Pyrat analyzer website, https://pyrat-analyzer.com/ [Accessed: June 22nd,
2024]

3. Albarghouthi, A.: Introduction to neural network verification (2021)
4. Bak, S.: nnenum: Verification of relu neural networks with optimized abstraction

refinement. In: NASA Formal Methods Symposium. pp. 19–36. Springer (2021)
5. Biegler, L.T., Grossmann, I.E., Westerberg, A.W.: Systematic methods for chem-

ical process design (12 1997), https://www.osti.gov/biblio/293030
6. Demarchi, S., Guidotti, D., Pulina, L., Tacchella, A.: Supporting standardization

of neural networks verification with vnn-lib and coconet. In: Proceedings of the
6th Workshop on Formal Methods for ML-Enabled Autonomous Systems. vol. 16,
pp. 47–58 (2023)

7. Duong, H., Li, L., Nguyen, T., Dwyer, M.: A dpll (t) framework for verifying deep
neural networks. arXiv preprint arXiv:2307.10266 (2023)

8. Ferlez, J., Khedr, H., Shoukry, Y.: Fast batllnn: fast box analysis of two-level lattice
neural networks. In: Proceedings of the 25th ACM International Conference on
Hybrid Systems: Computation and Control. pp. 1–11 (2022)

https://sites.google.com/view/vnn2024
https://pyrat-analyzer.com/
https://www.osti.gov/biblio/293030

A Benchmark Suite for Neural Network Verification 17

9. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial networks 63(11), 139–144 (oct
2020). https://doi.org/10.1145/3422622, https://doi.org/10.1145/3422622

10. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples (2015)

11. Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P.,
Thakoor, S., Wu, H., Zeljić, A., et al.: The marabou framework for verification
and analysis of deep neural networks. In: Computer Aided Verification: 31st In-
ternational Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019,
Proceedings, Part I 31. pp. 443–452. Springer (2019)

12. Kirov, D., Rollini, S.F.: Benchmark: remaining useful life predictor for aircraft
equipment. In: International Conference on Bridging the Gap between AI and
Reality. pp. 299–304. Springer (2023)

13. Kister, H.Z.: What caused tower malfunctions in the last 50 years? Chemical En-
gineering Research and Design 81(1), 5–26 (2003)

14. Lopez, D.M., Choi, S.W., Tran, H.D., Johnson, T.T.: Nnv 2.0: the neural network
verification tool. In: International Conference on Computer Aided Verification. pp.
397–412. Springer (2023)

15. Malhotra, P., Vig, L., Shroff, G., Agarwal, P.: Long short term memory networks
for anomaly detection in time series (04 2015)

16. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (sfcs 1977). pp. 46–57 (1977). https://doi.org/10.
1109/SFCS.1977.32

17. Postovan, A., Eraşcu, M.: Architecturing binarized neural networks for traffic sign
recognition. arXiv preprint arXiv:2303.15005 (2023)

18. Seader, J.D., Henley, E.J., Roper, D.K.: Separation process principles: Chemical
and biochemical operations. Wiley, Hoboken NJ, 3rd ed. edn. (2011)

19. Shi, Z., Jin, Q., Kolter, J.Z., Jana, S., Hsieh, C.J., Zhang, H.: Formal verification for
neural networks with general nonlinearities via branch-and-bound. 2nd Workshop
on Formal Verification of Machine Learning (WFVML 2023) (2023)

20. Zhang, H., Weng, T.W., Chen, P.Y., Hsieh, C.J., Daniel, L.: Efficient neural net-
work robustness certification with general activation functions. Advances in neural
information processing systems 31 (2018)

https://doi.org/10.1145/3422622
https://doi.org/10.1145/3422622
https://doi.org/10.1145/3422622
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32

Appendix

The following displays the full list of specifications and their formal representa-
tion. We will denote the sensor readings for temperature, pressure, concentration
of a substance s, (filling) level, liquid flow rate, and vapor flow rate by variables
ti, pi, csi , ℓi, f ℓi , and fvi , respectively.

1. Specifications defining bounds (on measurements):

– The pressure must always be greater than zero.

G(

np∧
i=0

pi > 0)

– The measured amount of substance (i.e., its concentration cs) must always
be greater or equal to zero

G(
∧
s∈M

nc∧
i=0

csi ≥ 0)

– The cooling QC has to be negative

G(QC < 0)

– The temperature in the plant must not exceed a certain threshold T

G(

nt∧
i=0

ti < T)

– The pressure in the plant must not exceed a certain threshold P

G(

np∧
i=0

pi < P)

2. Specifications defining Relations (between two measurement):

– The pressure at the bottom of the packings column p0 is greater than the
pressure at the top pnp

G(p0 > pnp
)

Remark: If the distillation column only consists of a single column the pres-
sures may also be equal and the above specification must be adjusted

A Benchmark Suite for Neural Network Verification 19

– The temperature at the bottom of the packings column t0 is greater than
the temperature at the top tnt

G(t0 > tnt)

Remark: If the distillation column only consists of a single column the tem-
peratures may also be equal and the above specification must be adjusted

– The temperature has to decrease from the bottom of the packings column
to the top

G(

nt−1∧
i=0

ti > ti+1)

Remark: If the distillation column only consists of a single column or to
sensors are placed in the same packing the temperature may also be equal
and the above constraint must be adjusted

– The concentration of the low boiler cLS (i.e., the substance with the lowest
boiling point) has to be higher in the condenser cLS

0 than at the bottom of
the packings column cLS

nc
(for zeotropic mixtures).

G[(cLS
0 < cLS

nc
)]

The amount of condensate mBrüden is at least the amount of reflux mreflux

G(mBrüden ≥ mreflux)

– For each stage, the balance equation has to hold, i.e., the sum of the con-
centrations of all substances s in the mixture M can not exceed 1

G(

nc∧
i=0

∑
s∈M

csi ≤ 1)

3. Specifications exclusive for continuous distillation:

– For each component s, the total mass entering each column i (ms
feedi

) must
be greater than or equal to the total mass leaving as distillate (ms

distillatei
)

and bottoms (ms
bottomsi

).

G(ms
feedi

≥ ms
distillatei +ms

bottomsi)

– For each component, the total mass entering the overall system (ms
feed) must

be greater than or equal to the total mass leaving the system as product
(ms

product).

G(ms
feed ≥ ms

product)

– The level in each of the column ℓi should at least be a certain minimum
volume Lmin and and not exceed a certain maximum volume Lmax

G(Lmin ≤ ℓi ∧ ℓi ≤ Lmax)

20 Lutz et al.

– In steady state, all of the process variables (temperature, pressure, concen-
trations, and flow rates) remain constant over time. For x ∈ {t, p, cs, f ℓ, fv}:

G(

nx∧
i=0

xi = ∼○xi)

Note that this condition may be too strict for practice, as small disturbances
may occur even in steady state. Therefore, we can relax the condition by
allowing subsequent measurements to change by a small predefined value ε.

G(

nx∧
i=0

xi − ε ≤ ∼○xi ∧ ∼○xi ≤ xi + ε)

– For each stage i, the component balance must be maintained. Let Li, Vi,
and Fi denote the liquid, vapor and feed flow rate of stage i, respectively.
Furthermore, let xi, yi, and zi denote the liquid, vapor and feed composition
at stage i.

G(Li+1xi+1 + Vi−1yi−1 + Fizi = Lixi + Viyi)

– The vapour and liquid compositions must be in equilibrium in each stage i
as represented by the VLE data. Let xi, and yi denote the liquid and vapor
composition at stage i.

G(yi = {vle,i(pi, ti, xi) = a · xi)

Note that the function {vle,i(pi, ti, xi) is non-linear in general. However, dur-
ing operation in remains constant and can therefore be precomputed in ad-
vance. This allows us to simplify the constraint using a suitable constant
a.

– In each stage i of the column, the heat balance (enthalpy balance) must be
satisfied. Let hLi , hVi , and hFi denote the liquid, vapor and feed enthalpy at
stage i. Furthermore, let Qi be the cooling at stage i.

G(Li+1h
L
i+1 + Vi−1h

V
i−1 + Fih

F
i = Lih

L
i + Vih

V
i +Qi

4. Specifications exclusive for discontinuous, batch distillation:

– The level ℓ0 (i.e., the amount of mixture) in the distillation still has to be
positive

G(ℓ0 ≥ 0)

– For known mixtures the pressure has to be within a given interval [pmin
i , pmax

i]

G(

n∧
i=1

pmin
i ≤ pi ∧ pi ≤ pmax

i)

A Benchmark Suite for Neural Network Verification 21

– The amount of product mproduct can not exceed the amount of input minput

as parts of the mixture remain in the plant

G(minput > mproduct)

– The mass balance has to be fulfilled in the end, i.e., the sum of the product
mproduct and the remainder in the distillation still mdistilationstill equals the
amount of input minput. Note that this condition is to strict for practice,
as small amounts of liquid remain in the distillation column. Therefore, we
relax the condition to greater or equal instead of strictly equal.

G(Xfalse→ (minput ≥ mproduct +mdistillationstill))

– Continuity over time for pressure, temperature and concentration. Note that
we verify continuity by checking whether the difference between the measure-
ments is smaller than some predefined threshold ϵ. With x ∈ {p, t, c}

G(

nx∧
i=0

xi − ϵx ≤ ∼○xi ∧ ∼○xi ≤ xi + ϵx)

– Continuity over the packing column for pressure and temperature. With
x ∈ {p, t}

G(

n−1∧
i=0

xi − ϵx ≤ xi+1 ∧ xx+1 ≤ xi + ϵx)

5. More specifications which do not have a formal representation
(yet):

– Energy balance over the whole distillation (1. law of thermodynamics):

sum of heating = sum of cooling + ε

– The chemical process has to follow certain constraints, e.g., distillation lines
(dependent of the mixture): In batch distillation processes, there is a non-
linear function for each component which describes its concentration a each
time point during the distillation

– The amount of condensate (mBrüden) has to correspond to the amount of
heating in the distillation still: In batch distillation processes, there is a
non-linear function also depending on concentration and pressure.

– The fluid dynamic restrictions of the packings must be complied with, e.g.
gas & liquid load or maximal capacity: These restrictions are described by
non-linear functions

– If mRuecklauf = 0 or after really long time, the measurements in the distil-
lation still and at the top of the packing column of batch distillation plants
are connected through phase equilibrium conditions: These conditions are
described by non-linear functions

	A Benchmark Suite for Verifying Neural Anomaly Detectors in Distillation Processes

