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Abstract. In system monitoring, automatic fault diagnosis seeks to in-
fer the systems’ state based on sensor readings, e.g., through machine
learning models. In this context, it is of key importance that, based on
historical data, these systems are able to generalize to incoming data.
In parallel, many factors may induce changes in the data probability
distribution, hindering the possibility of such models to generalize. In
this sense, domain adaptation is an important framework for adapting
models to different probability distributions. In this paper, we propose
a new benchmark, based on the Tennessee Eastman Process of Downs
and Vogel (1993), for benchmarking domain adaptation methods in the
context of chemical processes. Besides describing the process, and its rel-
evance for domain adaptation, we describe a series of data processing
steps for reproducing our benchmark. We then test 11 domain adapta-
tion strategies on this novel benchmark, showing that optimal transport-
based techniques outperform other strategies4.

Keywords: Transfer Learning · Domain Adaptation · Optimal Trans-
port · Tennessee Eastman Process.

1 Introduction

Within process supervision, faults are unpermitted deviations of a characteris-
tic property or variables of a system [16]. Furthermore, there is an increasing
demand on reliability and safety of technical plants, motivating the necessity of
methods for supervision and monitoring. These are Fault Detection and Diag-
nosis (FDD) methods, which comprise the detection, i.e., if and when a fault has
occurred, and the diagnosis, i.e., the determination of which fault has occurred.
In this paper, we focus on Automatic Fault Diagnosis (AFD) systems, assuming
that faults were previously detected accordingly.

In parallel, Machine Learning (ML) is a field of artificial intelligence, that
defines predictive models based on data. Nonetheless, these models make an im-
plicit assumption, that training and test data come from the same probability
4 � Our code is open sourced at https://github.com/eddardd/
tep-domain-adaptation
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distribution, which is seldom verified in practice [26], as both training and test
data may be collected under heterogeneous conditions that drive shifts in prob-
ability distributions. This phenomenon motivates the field of Transfer Learning
(TL) [23] to propose algorithms that are robust to distributional shift.

There is a straightforward link between ML and AFD systems, as one can un-
derstand fault diagnosis as a classification problem. In this sense, one uses sensor
data (e.g., temperature, concentration, flow-rate) as inputs to a classifier, which
predicts the corresponding fault, or its absence [34]. Further, TL is a broad field
within ML, in which knowledge must be transferred from a source to a target
context. Within TL, Domain Adaptation (DA) is a common framework where
one has access to labeled data from a source domain, and unlabeled data from a
target domain. Thus, DA seeks improving classification accuracy on target do-
main data. In many cases, source data is itself heterogeneous, following multiple
probability distributions. This setting is known as Multi-Source DA (MSDA).

In this paper, we propose a new benchmark, based on the Tennessee East-
man Process (TEP) [7, 28], a complex, large-scale chemical process used by the
chemical engineering community for benchmarking control systems, as well as
FDD techniques. This process is interesting for DA, as it may operate at differ-
ent modes of production. As we show in our case study (section 3), the different
modes of production induce different data probability distributions, thus the
need for DA techniques for improving generalization. We further benchmark ex-
isting techniques in DA, either based on pre-extracted features (shallow DA), or
through deep learning (deep DA).

The rest of this paper is divided as follows. Section 2 covers the theoretical
foundations of our work. Section 3 presents a case study of the TEP. In this
section, we present the system, analyze the properties of the different modes of
production, and benchmark different strategies in DA. Finally, section 4 con-
cludes this paper.

2 Classification and Domain Adaptation

In supervised learning, one is provided with a dataset {x(P )
i , y

(P )
i }ni=1, where

x
(P )
i

iid∼ P , and y
(P )
i = h0(x

(P )
i ), for a distribution P and a ground-truth labeling

function h0 : X → Y. X is called feature space, such as Rd, and Y label space,
in this case {1, · · · , nc}. The goal of classification is finding, among a family of
functions H, ĥ such that,

ĥ = argmin
h∈H

1

n

n∑
i=1

L(h(x(P )
i ), y

(P )
i ), (1)

where L is a loss function, such as the Cross-entropy (CCE), CCE(y, ŷ) =∑nc

c=1 yc log ŷc. This approach, known as empirical risk minimization, has the
desirable property that ĥ correctly predicts on unseen samples from P . This
property is known as generalization. We refer readers to [27] for a review on the
theory of generalization.
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In this paper, we consider deep neural nets composed of 2 parts: an encoder
network ϕ, and a classifier h. The encoder maps data x ∈ X into a latent
representation z ∈ Z, whereas the classifier maps the representation into a label
space Y. Hence, ŷ(P )

i = h(ϕ(x
(P )
i )). As such, eq. 1 is minimized with respect the

parameters of the encoder, θϕ and classifier θh.

Fig. 1: Illustration of a deep neural net, where data x
(P )
i are mapped into

latent representation vectors z
(P )
i through an encoder ϕ. The latent representa-

tion is then used to predict a class, i.e., ŷ(P )
i .

The main challenge faced by ML models is generalizing beyond samples from
P . In this sense, it is desirable that ĥ generalizes to different, but related distri-
butions Q, which is known as TL [23]. Within TL, DA is a popular framework
where one seeks to improve performance on a target domain based on knowledge
available in a source domain. Especially, a domain is a pair D = (X , P ), where P
is a distribution the feature space X . Likewise, a task is a pair T = (Y, h0), where
h0 : X → Y is a ground-truth labeling function. Given a source domain and task
(DS , TS), and a target domain and task, (DT , TT ), in DA one has TS = TT , but
PS ̸= PT . As a consequence, DS ̸= DT . The goal of DA can be summarized as
follows: given labeled samples from the source domain, and unlabeled samples
from the target domain, find a classifier ĥ that generalizes to samples from PT .

In addition, one may have a scenario where source domain data is heteroge-
neous. In this case, one assumes that this domain is composed of several distri-
butions, i.e., PS1

, · · · , PSN
, for N > 1. This case is known in the literature as

MSDA. Besides the challenge of having PSℓ
̸= PT , one has inter-domain shifts,

i.e., PSℓ
̸= PSℓ′ , for ℓ ̸= ℓ′.

Given our discussion so far, one needs a notion of closeness between PS and
PT for having generalization to new distributions Q [27, Theorem 10]. We thus
focus on DA methods that seek to reduce the distance between distributions
PS and PT through data transformations. In a nutshell, these methods apply
a mapping to x

(PS)
i , so that {T (x(PS)

i )}ni=1 is distributed in the same way as
{x(PT )

j }. This idea is illustrated in Fig. 2. This alignment supposes a criterion
of dissimilarity between these objects. In this sense, one may use probability
metrics, which are distances in the space of probability distributions. In our
experiments, we consider three prominent metrics, namely, the H-distance, the
Maximum Mean Discrepancy (MMD) and the Wasserstein distance.
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Fig. 2: Domain adaptation based on data transformation. In an ambient
space, source and target data follow different probability distributions. As a
result, a classifier learned on the source (blue straight line on the left) is not able
to generalize on data from the target domain (orange elements). In this paper
we consider methods that align the distributions through a data transformation
T , which maps data into a latent space.

The H-distance has its roots on DA theory [2]. This distance measures how
likely a classifier can separate samples from these distributions. Hence, let h ∈ H
be a classifier,

dH(P̂S , P̂T ) = 2

(
1− min

h∈H

(
1

n

n∑
i=1

log(1− h(x
(PS)
i )) +

1

m

m∑
j=1

log h(x
(PT )
j )

))
.

(2)

Note that the dH can be easily estimated from samples {x(PS)
i }ni=1 and {x(PT )

j }mj=1,
by learning a classifier that predicts the domain of a given sample (e.g., 0 for
PS , and 1 for PT ).

The MMD has its roots on kernel theory [13], and was initially proposed to
test if two samples come from the same distribution. Let k : Rd × Rd → R be a
kernel, the MMD can be defined as,

MMDk(P̂S , P̂T )
2 =

1

n2

n∑
i=1

n∑
j=1

k(x
(PS)
i ,x

(PS)
j ) +

1

m2

m∑
i=1

m∑
j=1

k(x
(PT )
i ,x

(PT )
j )

− 2

nm

n∑
i=1

m∑
j=1

k(x
(PS)
i ,x

(PT )
j ),

(3)
examples of kernels include the linear kernel k(x(PS)

i ,x
(PT )
j ) = (x

(PS)
i )⊤x

(PT )
j ,

and the Gaussian kernel, k(x(PS)
i ,x

(PT )
i ) = exp (−γ∥x(PS)

i − x
(PT )
j ∥22), for a pa-
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rameter γ > 0. Intuitively, the MMD is a distance between the means of distri-
butions in an embedding space defined by the kernel k.

Finally, the Wasserstein distance Wp is rooted on the theory of Optimal
Transport (OT). In its modern computational treatment [25, 10], the OT problem
can be phrased as,

γ⋆ = argmin
γ∈Γ

n∑
i=1

m∑
j=1

γij∥x(PS)
i − x

(PT )
j ∥p2, (4)

where γ ∈ Rn×m is called OT plan, and Γ is the set of mass preserving plans,
i.e., matrices γ such that their row sum

∑n
i=1 γij = m−1, and column sum∑m

j=1 γij = n−1. Problem 4 is a linear program, which can be solved exactly
through the Simplex method [6]. Based on γ⋆, the Wasserstein distance is

Wp(P̂S , P̂T )
p =

n∑
i=1

m∑
j=1

γ⋆
ij∥x

(PS)
i − x

(PT )
j ∥p2.

Let N (µ,Σ) denote the Gaussian distribution with mean µ ∈ Rd, and covari-
ance matrix Σ ∈ Sd

+, i.e., a d × d symmetric and positive semi-definite matrix.
For p = 2, PS = N (µS , ΣS) and PT = N (µT , ΣT ), the Wasserstein distance is,

W2(PS , PT )
2 = ∥µS − µT ∥22 + B(ΣS , ΣT ), (5)

where B is the Bures-metric between covariance matrices [29]. While OT-based
DA methods use equation 4, equation 5 is commonly used for estimating the
Wasserstein distance given samples. In this case, the parameters (µS , ΣS , µT , ΣT )
are the sample mean and covariance from each domain.

Table 1: Description of shallow and deep domain adaptation methods alongside
the notion of distance they minimize during training.

Single Source Multi Source
Method Distance Category Reference Method Distance Category Reference

TCA MMD Shallow [23] M3SDA MMD Deep [24]OTDA W2 Shallow [4] M3SDAβ

JDOT W2 Shallow [3] WJDOT W2 Shallow [30]
MMD MMD Deep [12] WBTreg W2 Shallow [9, 8]
DANN dH Deep [11] DaDiL-R

W2 Shallow [21]DeepJDOT W2 Deep [5] DaDiL-E

A final distinction between DA methods is with respect their strategy. First,
we consider shallow DA methods. These strategies apply transformations to pre-
extracted features, in the hope of aligning the data distributions. For instance,
Transfer Component Analysis (TCA) [23] projects data into a lower dimensional
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space while minimizing the MMD. With respect the architecture shown in Fig. 1,
these methods keep the parameters of the encoder network ϕ frozen during adap-
tation, and fine-tune the classifier h on the adapted data. Second, we consider
deep DA methods, which rely on the encoder network ϕ for aligning the data.
The principle is to minimize the distance in distribution between ϕ♯PS and ϕ♯PT

(c.f., Fig. 2). This is the case of DeepJDOT [5], which minimizes the Wasser-
stein distance between the aforementioned distributions. In total, we consider 11
methods, as shown in Table 1. We refer readers to the original papers for further
details on these algorithms.

3 Case Study: the Tennessee Eastman Process

In this section, we present our case study, the Tennessee Eastman Process (TEP).
This chemical process was first introduced by [7], with the intent to serve as a
realistic benchmark for the design of control and monitoring systems. From the
perspective of fault detection and diagnosis [20], this system is widely used by the
academic community. Henceforth, we follow the description of the TEP by [28].
The TEP consists on the production of two liquid product components, G and
H, from 4 gaseous reactants, A, C, D and E, with an additional inert B and a
byproduct F , which are related through 4 exothermic and irreversible reactions,

A(g) + C(g) +D(g) → G(liq) Product 1,
A(g) + C(g) + E(g) → H(liq) Product 2,

A(g) + E(g) → F (liq) Byproduct,
3D(g) → 2F (liq) Byproduct.

(6)

The TEP system is composed by five major process units: reactor, product con-
denser, vapor-liquid separator, recycle compressor and product stripper, shown
in Fig. 3. Based on the reactions in equation 6, there are 6 different modes of op-
eration, which correspond to 3 different G/H mass ratios, and a desired product
rate. The different modes of operation are shown in Table 2.

From the perspective of DA, each mode of operation induces changes in the
statistical properties of the data. As a result, a model learned with historical
data from a set of operation modes (e.g., 1, · · · , 5) may not generalize to a new
operation mode (e.g., 6). At the same time, collecting labeled data at the new
operation mode is costly. MSDA is thus a natural solution, where one leverages
historical data from previous modes to learn a better model on the new mode,
only requiring unlabeled data on the new operation conditions. In section 3.1,
we describe a methodology for building a MSDA benchmark on top of TEP
simulations provided by [28].

To build an AFD system, we need to collect data from a set of sensors, then
categorize the data into a set of faults. In this paper, we use the data provided
by [28]. In their simulations, there are 53 sensors in the overall plant, correspond-
ing to different physical and chemical quantities. We group these variables into
measurements (denoted XME(i), for the i−th measurement) and manipulated
(denoted XMV(j), for the j−th manipulation), as shown in Table 3.
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Fig. 3: P&ID diagram for the TEP. Figure reproduced from [1], which shows
the main components of the process. Measurements originally introduced by [7]
are shown in gray, whereas the measurements introduced by [1] are shown in
red. A simulation environment, based on this diagram, is described in [28].

Table 2: TEP operation modes, as described in [7]. In our experiments, each
mode of operation corresponds to a different domain.

Mode Mass Ratio Production rate

1 50/50 7038 kg h−1 G and 7038 kg h−1 H
2 10/90 1408 kg h−1 G and 12,669 kg h−1 H
3 90/10 10,000 kg h−1 G and 1111 kg h−1 H
4 50/50 maximum production rate
5 10/90 maximum production rate
6 90/10 maximum production rate

In this dataset, the TEP system is simulated for a 100 hours, with a sampling
rate of 3 minutes. As such, we use each simulation as a sample in our MSDA
benchmark. In each simulation, faults are introduced after 600 time steps (i.e., 30
hours). Concerning the type of faults, in their initial publication, [7] presents 20
types of process disturbances (faults 1 through 20 in Table 4), affecting different
process variables. In addition to these initial faults, [1] proposed 8 additional
faults under the type random variation, as shown in Table 4.

3.1 Benchmark preparation

Data Cleaning. For each mode, the simulations provided by [28] are divided
into 3 groups: set-point variation, mode transitions and single fault. In the first
case, the authors change the initial simulation set-point using a step or ramp
function. In the second case, the simulation changes from one mode to another
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Table 3: Description of process variables of the TEP. Variables are divided into
measurements (XME) and manipulated (XMV).

Variable Description Variable Description Variable Description Variable Description

XME(1) A Feed (kscmh) XME(15) Stripper Level (%) XME(29) Component A in Purge (mol %) XMV(2) E Feed (%)
XME(2) D Feed (kg/h) XME(16) Stripper Pressure (kPa gauge) XME(30) Component B in Purge (mol %) XMV(3) A Feed (%)
XME(3) E Feed (kg/h) XME(17) Stripper Underflow (m3/h) XME(31) Component C in Purge (mol %) XMV(4) A & C Feed (%)
XME(4) A & C Feed (kg/h) XME(18) Stripper Temp (°C) XME(32) Component D in Purge (mol %) XMV(5) Compressor recycle valve (%)
XME(5) Recycle Flow (kscmh) XME(19) Stripper Steam Flow (kg/h) XME(33) Component E in Purge (mol %) XMV(6) Purge valve (%)
XME(6) Reactor Feed rate (kscmh) XME(20) Compressor Work (kW) XME(34) Component F in Purge (mol %) XMV(7) Separator liquid flow (%)
XME(7) Reactor Pressure (kscmh) XME(21) Reactor Coolant Temp (°C) XME(35) Component G in Purge (mol %) XMV(8) Stripper liquid flow (%)
XME(8) Reactor Level (%) XME(22) Separator Coolant Temp (°C) XME(36) Component H in Purge (mol %) XMV(9) Stripper steam valve (%)
XME(9) Reactor Temperature (°C) XME(23) Component A to Reactor (mol %) XME(37) Component D in Product (mol %) XMV(10) Reactor coolant (%)
XME(10) Purge Rate (kscmh) XME(24) Component B to Reactor (mol %) XME(38) Component E in Product (mol %) XMV(11) Condenser Coolant (%)
XME(11) Product Sep Temp (°C) XME(25) Component C to Reactor (mol %) XME(39) Component F in Product (mol %) XMV(12) Agitator Speed (%)
XME(12) Product Sep Level (%) XME(26) Component D to Reactor (mol %) XME(40) Component G in Product (mol %)
XME(13) Product Sep Pressure (kPa gauge) XME(27) Component E to Reactor (mol %) XME(41) Component H in Product (mol %)
XME(14) Product Sep Underflow (m3/h) XME(28) Component F to Reactor (mol %) XMV(1) D Feed (%)

Table 4: Description and types of faults for the TEP in the simulation envi-
ronment of [28]. Faults are grouped into 4 types: step, random variation (RV),
sticking and unknown.
Fault Variable Type Fault Class Variable Type

1 A/C feed ratio, B composition constant Step 15 Water outlet temperature (separator) Sticking

2 B composition, A/C ratio constant Step 16 Variation coefficient of the steam supply of
the heat exchange of the stripper RV

3 D feed temperature Step 17 Variation coefficient of heat transfer (reac-
tor) RV

4 Water inlet temperature (reactor) Step 18 Variation coefficient of heat transfer (con-
denser) RV

5 Water inlet temperature (condenser) Step 19 Unknown Unknown
6 A feed loss Step 20 Unknown RV
7 C header pressure loss Step 21 A feed temperature RV
8 A/B/C composition of stream 4 RV 22 E feed temperature RV
9 D feed temperature 4 RV 23 A feed flow RV
10 C feed temperature RV 24 D feed flow RV
11 Water outlet temperature (reactor) RV 25 E feed flow RV
12 Water outlet temperature (separator) RV 26 A & C feed flow RV
13 Reaction kinetics RV 27 Water flow (reactor) RV
14 Water outlet temperature (reactor) Sticking 28 Water flow (condenser) RV

at an instant in time. In the third case, as previously mentioned, a fault is
introduced at time step 600, i.e., after 30 hours of simulation. For each fault,
there are multiple intensities available (e.g., 25%, 50%, 75% and 100% fault
magnitude). For magnitudes 25%, 50% and 75%, the system is simulated 100
times, whereas for 100%, the system is simulated 200 times. As a result, for the
single-fault scenario only, the data provided by [28] contains,

28 faults × 6 modes × 500 simulations = 84000 simulations.

Nonetheless, one should note that some simulations terminate earlier than 100h,
due to forced plant-shutdown. As a result, we adopt the following strategy: for
each fault, we keep the first 100 simulations of highest magnitude that terminate
successfully. For each selected simulation, we crop the signal into 2 parts. The
first 30h correspond to the steady state, determined by the set point of the
mode of operation. This first part of the signal characterizes the healthy state of
the system (i.e., faultless state). We further sub-sample the number of faultless
state signals to keep a balanced dataset (i.e., 100 per mode of operation). The
second part consists on the next 30h of simulation. Since faults are introduced
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exactly at the 601th time step, the second part of the signal characterize each
fault. This process generates a slightly imbalanced dataset of 17289 samples5.
We summarize the division of samples among modes of operation in Table 5.

Table 5: Number and percentage of samples from each mode of operation.
Mode of Operation # of Samples % of Samples

1 2900 16.77
2 2845 16.45
3 2899 16.76
4 2865 16.57
5 2883 16.67
6 2897 16.75

Total 17289 100

Variable selection and pre-processing. Out of the 53 variables presented
in Table 3 some of these variables are not continuous (e.g., XME(23) through
XME(41)). Given this remark, we follow [28], and consider a sub-set of 34 con-
tinuous signals as input to our neural nets. These are measurements XME(1)
through XME(22), and manipulated variables XMV(1) through XMV(12). We
thus have multi-variate time series of shape (34, 600), where 34 is the number of
sensor readings (i.e., considered variables), and 600 corresponds to the number
of time steps (T ). We further perform a standardization along each variable,
within each mode, x(Pℓ)

i,j,t = (x
(Pℓ)
i,j,t − µ

(Pℓ)
j )/σ

(Pℓ)
j , where,

µ
(Pℓ)
j =

1

nℓT

nℓ∑
i=1

T∑
t=1

x
(Pℓ)
i,j,t , and σ

(Pℓ)
i,j,t =

√√√√ 1

nℓT

nℓ∑
i=1

T∑
t=1

(x
(Pℓ)
i,j,t − µ

(Pℓ)
j )2,

where nℓ is the number of samples for mode ℓ = 1, · · · , 6 (c.f., Table 5).
Neural Network Backbone. In DA, it is common to choose a backbone upon
which methods will rely on. For instance, in image processing, residual net-
works [14] are widely used. In the context of time series, In our paper, we em-
ploy a Fully Convolutional Network (FCN) [19, 32, 17], which consists on three
convolutional blocks followed by a Global Average Pooling (GAP) layer. Each
convolutional block has a convolutional layer, and a normalization layer. In our
experiments we verified that instance normalization [31] improves stability and
performance over other normalization layers such as batch normalization [15].

3.2 Exploratory Data Analysis

Qualitative Analysis. We analyze the pairwise correlations of variables, con-
ditioned on the type of fault. In Fig. 4, we illustrate a change in the pattern of
5 The data used in our experiments is available on Kaggle: https://www.kaggle.com/
datasets/eddardd/tennessee-eastman-process-domain-adaptation/data
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(a) Mode 1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

1
3

5
7

9
11

1
3

15
17

19
2
1

23
25

27
2
9

31
33

No Fault

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

1
3

5
7

9
11

1
3

15
17

19
2
1

23
25

27
2
9

31
33

IDV 6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

1
3

5
7

9
11

13
15

17
1
9

2
1

23
25

2
7

29
31

33

IDV 15

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

1
3

5
7

9
11

13
15

17
1
9

2
1

23
25

2
7

29
31

33

IDV 18

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(b) Mode 2

Fig. 4: Qualitative analysis of distributional shift. In (a) and (b), we show
the correlation between different variables in TEP, for modes 1 and 2, for no
fault, and IDVs 6, 15 and 18.

correlations between variables, conditioned on the fault type, for modes 1 and 2
for a 4 cases: no fault, IDV 6, 15 and 18. From this figure, we conclude that the
mode of production deeply impacts the dynamic of the system, which creates a
shift in distribution between data from these modes.
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Fig. 5: Quantitative analysis of distributional shift. Pairwise Wasserstein
distance between modes (a). Mode embeddings based on MDS (b).

Quantitative Analysis. We quantify the shift between pairs of modes through
the probability metrics introduced in section 2. We estimate the pairwise Wasser-
stein distances between modes using eq. 5. In Fig. 5 (a), we show the pairwise
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distance in probability distribution between different modes. On one hand, the
most different mode with respect others is Mode 2, which is especially far from
modes 1, 3 and 5. On the other hand, the most similar modes are 3 and 6. We
can have a better picture about the level of similarity of these different domains
by embedding them on the plane, as shown in Fig. 5 (b). We obtain these embed-
dings through Multi-Dimensional Scaling (MDS) [18], which defines the points
in R2 while preserving the pairwise distances between the embeddings.

From our qualitative and quantitative analysis, we expect lower performances
with respect the adaptation towards mode 2, as it is the most dissimilar from
other modes (c.f., Fig. 5 (a), average row). In contrast, adaptation between modes
(3, 6), and (1, 4, 5) should work well as these modes share statistical character-
istics. We verify these indications empirically in the next sections.

3.3 Single-Source Domain Adaptation

In this section, we explore single-source DA, i.e., when adaptation is done from
a single source mode, to a single target mode. On the one hand, we refer to
generalization, to the ability of a classifier to perform well on unseen data from
an unseen domain. On the other hand, we refer to adaptation, when a classifier
performs well on unseen data from the target domain. In this context, we have
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Fig. 6: Baseline (a) and single-source domain adaptation (b) algorithms.

2 baselines. The first, source-only, considers that a classifier is learned exclu-
sively with source domain data (i.e., no adaptation). This corresponds to the
off-diagonals of Figure 6 (a). Second, we have target-only, which trains and eval-
uates models on the target domain (i.e., no distributional shift). Note that the
target-only scenario has an advantage over other methods, as it has access to
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labeled data in the target domain. This baseline can be seen as an upper bound
in the adaptation performance.. With respect these scenarios, note that we verify
our previous remarks, i.e., generalization towards mode 2 is much more difficult
than other domains, and the clusters of similar domains (e.g., (3, 6) and (1, 4, 5))
generalize well.

We further compare the single-source DA methods presented in Table 1,
which are shown in Fig. 6 (b) through (g). Overall, we find that OT-based
methods have a higher performance than other metrics (e.g., the MMD). This
is similar to previous findings on smaller scale problems, such as [22]. The best
performing method is Optimal Transport Domain Adaptation (OTDA) [4], which
maps source domain points to the target domain points through the OT plan
(c.f., eq. 4). Nonetheless, one should be mindful of negative transfer [33] between
similar modes (e.g., 3 → 5), which may result in performance degradation.

3.4 Multi-Source Domain Adaptation

In this section, we explore multi-source DA, i.e., when adaptation is done from
multiple source domains towards a single target. Here, note that the models
have much more labeled available data, as all domains are considered at once.
We start our discussion by comparing the performance of single, source-only
baselines, and the corresponding multi-source baseline for each target mode,
which is shown in Fig. 7. Overall, the multi source-only baseline improve over
single single-only for the same target. These baselines have similar performance
when there are pairs of highly similar modes (e.g., modes 3 and 6), showing that
extra data from additional modes is not as informative for generalization.
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Fig. 7: Multi and single-source baseline comparison. On top, we show the
target domain. In the abscissa, we show the corresponding baseline. The multi-
source scenario generally improves over the single source-only case.

We now consider the performance of DA algorithms in the multi-source set-
ting. Besides native MSDA algorithms, i.e., algorithms that suppose the source
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as composed by different domains, we also consider single-source algorithms with
access to the concatenation of all source domains. Our comparison is shown in
Fig. 8. A first question is whether access to additional data is beneficial to adap-
tation. For instance, in single-source DA, methods exhibited negative transfer in
the task 3 → 5. When provided access to data from all domains, all single-source
adaptation method performance improved over the single-source baseline. As a
result, even though data from multiple domains may not improve generalization,
it does improves adaptation.

70

80

90

Target Mode 1

20

40

60

80

Target Mode 2

70

80

90

Target Mode 3

D
A

N
N

M
3S

D
A

M
3S

D
A
β

M
M

D
T

C
A

S
rc

-O
n

ly
O

T
D

A
D

ee
p

JD
O

T
JD

O
T

D
aD

iL
-E

W
B

T
re
g

W
JD

O
T

D
aD

iL
-R

T
gt

-O
n

ly

60

70

80

90

Target Mode 4

D
A

N
N

M
3S

D
A

M
3S

D
A
β

M
M

D
T

C
A

S
rc

-O
n

ly
O

T
D

A
D

ee
p

JD
O

T
JD

O
T

D
aD

iL
-E

W
B

T
re
g

W
JD

O
T

D
aD

iL
-R

T
gt

-O
n

ly

60

70

80

Target Mode 5

D
A

N
N

M
3S

D
A

M
3S

D
A
β

M
M

D
T

C
A

S
rc

-O
n

ly
O

T
D

A
D

ee
p

JD
O

T
JD

O
T

D
aD

iL
-E

W
B

T
re
g

W
JD

O
T

D
aD

iL
-R

T
gt

-O
n

ly

70

80

90

Target Mode 6

Fig. 8: Multi-source domain adaptation results. We compare all algorithms
with access to labeled data from all source domains, except the target mode, from
which we have access to unlabeled data. Methods in the abcisssa are ordered by
average performance on all modes.

With respect Fig. 8, from the perspective of MSDA, methods that weight
sources in a linear space, such as WJDOT, or in a Wasserstein space, such
as WBT and DaDiL outperform the weighting of classifiers’ predictions, such as
M3SDAβ [24]. On the one hand, WJDOT can filter undesirable information dur-
ing adaptation by assigning small weights to domains and samples. On the other
hand, WBT and DaDiL combine the information in the sources non-linearly.
These two strategies are effective in domain adaptation.

Finally, from Fig. 9, we can see that shallow DA methods (e.g., JDOT)
generally improve over deep DA methods (e.g., DeepJDOT). Indeed, deep DA
methods learn features that are invariant to the domain shift between different
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modes. As a result, these features may be less useful for classification. In a general
note (both single, and multi-source methods), OT-based techniques outperform
methods based on other distances, such as the MMD and dH. This remark agrees
with previous studies on smaller scale systems [22].
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4 Conclusion

In this paper, we introduce a new benchmark for domain adaptation algorithms
based on the Tenessee Eastman process [7]. The present benchmark is created
by applying pre-processing steps on the simulations provided by [28] (c.f., sec-
tion 3), thus creating a large scale dataset of time series. These time series are
associated with different modes of production. Based on each mode of produc-
tion, the statistical properties of the time series change (c.f., Fig. 4) creating a
shift in the data probability distribution (c.f., Fig. 5). As a result, data trained
on a specific mode may not generalize well to other modes of production, thus
the need for domain adaptation. Through a series of experiments with single-
source and multi-source domain adaptation methods, we show that OT-based
methods outperform methods that rely on the maximum mean discrepancy, and
H−distances, which agrees with previous findings on smaller scale systems [22].
Besides providing the open source code for the reproduction of our benchmark,
with this work we hope to encourage research on the intersection between domain
adaptation and fault diagnosis [34].
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